

Final Report

Team E: Beyond Sight

Environmental Sensing Infrastructure for
Autonomous Driving

Team Members:

Rohit Murthy
Vivek GR

Oliver Krengel
Chien Chih Ho

Peng Sheng Guo

Sponsors:
David Held
John Dolan

Dimi Apostolopoulos

May 9, 2018

i

Abstract

An oft-repeated promise of self-driving car makers and advocates is the reduction in car-
related injuries and fatalities that will accompany the adoption of autonomous driving
technology. While the authors of this report agree that this assessment is correct, we aim to
address a fundamental problem that self-driving vehicles cannot solve on their own: occlusion.
The majority of car accidents occur at intersections, and many of these involve moving objects
that enter a driver’s field of vision without sufficient time to prevent a collision. By themselves,
self-driving vehicles face the same problem, they cannot prevent collisions with objects that they
cannot sense. This report proposes a novel method of accident prevention in these occluded
scenarios. By embedding sensors in occlusion-free vantage points that can communicate with
approaching vehicles, accidents can be prevented with moving obstacles that the vehicles
themselves cannot sense. This report covers the requirements, development, testing, and
deployment of the system described. In this proof-of-concept, data is fused between the
environmental sensing infrastructure and GPS data from an approaching vehicle to provide an
early warning system for the driver.

ii

Table of Contents
Abstract i
1. Project Description 1

2. Use Case 2

3. System-Level Requirements 3

3.1 Functional Requirements 3

3.2 Performance Requirements 4

3.3 Non-Functional Requirements 4

4. Functional Architecture 5

5. System-level trade studies 6

5.1. Communication 6

5.2. Vehicle Localization 7

5.3. Camera 7

5.4. Detection 8

5.5. Tracking Algorithm 8

5.6. Prediction Algorithm 8

6. Cyberphysical Architecture 9

7. System description and evaluation 10

7.1 Overall System 10

7.2 Subsystem Descriptions 11

7.2.1 LiDAR-based Detection 11

7.2.2 Camera-based Detection 11

7.2.3 LiDAR-Camera Fusion 11

7.2.4 Multi-pedestrian Tracking 12

7.2.5 Multi-pedestrian Trajectory Prediction 13

7.2.6 Sensing Infrastructure 14

7.2.7 GPS-based Localization 15

7.2.8 Communication 16

7.3 Spring Validation Experiment (SVE) Performance Evaluation 16

7.4 Strengths and Weaknesses 16

7.4.1 Strengths 16

7.4.2 Weaknesses 17

7.4.3 Opportunities for improvement 17

8. Project management 18

iii

8.1 Schedule 18

8.2 Budget* 19

8.3 Risk management 21

9. Conclusions 22

9.1 Lessons Learned 22

9.2 Future Work 23

10. References 23

Appendix: Parts List 24

1

1. Project Description

Every year in the United States, approximately 2.5 million accidents are reported at
intersections, as reported by the Federal Highway Commission [1]. The same agency reports that
intersection accidents account for 40% of all crashes. Even more worrisome, 50% of all serious
collisions and 20% of all fatal collisions occur at intersections.

 A study conducted by the National Highway Traffic Safety Administration found
“obstructed view” as a primary reason for intersection accidents across drivers of all ages and
genders [2]. This will come as no surprise to any driver, though. Intersections pose difficulties
that drivers do not experience on 2 lane roads, such as:

● Timed signals to monitor
● Cars from the side turning in front of driver
● Cars from in front turning in front of driver
● Cars stopping in front of driver to turn
● Pedestrians crossing in front of driver
● Pedestrians crossing beside driver

With all these reasons accounted for, it is no wonder how many accidents occur at

intersections. In many cases, drivers simply have too many obstacles to account for at any given
time. The proliferation of self-driving cars may assist vehicles at intersections in accounting for
many obstacles simultaneously, but the problem of occluded viewpoints remains. With only car-
mounted sensors, vehicles driving through intersections may not be able to detect obstacles such
as crossing vehicles and pedestrians if their view is occluded by larger vehicles. The use of
information gathered on sensors outside the vehicle will therefore be necessary to solve the
occlusion problem.

To solve the occlusion problem, we are proposing an infrastructure system at
intersections that will be able to detect moving objects and predict their
movements. Furthermore, the system will be designed to interface with vehicles approaching
and passing through intersections, so that it can communicate with these vehicles. By utilizing
path prediction and communication, the system will be able to detect would-be collisions in
advance and alert vehicles, thus preventing collisions.

In this project, we start by outlining the system requirements in Sections 3-5 based on
which the system is designed. we have developed a LIDAR/Camera-based system that detects,
track, and predicts pedestrian trajectories which is detailed in Section 7. This data is fused with
incoming GPS data from an approaching vehicle over radio. By using the predicted paths of the
pedestrians and the vehicle, would-be collisions are detected in advance, and the driver of the
vehicle is sent an alert to stop the car in order to prevent the collision.

The system has been tested on a controlled environment modelled off of a standard four-

way intersection. By utilizing high vantage points capable of viewing all approaching foot and

2

vehicle traffic, even in the event of large vehicles entering the area, we demonstrate the
reliability of such a system to prevent the hardest-to-avoid accidents.

2. Use Case

Andy is driving to work along his normal route, down Forbes avenue through
Oakland. He is attending to the road but he is in autopilot, it is early in the morning and he has
made this commute hundreds of times. He turns onto Bellefield then makes a left on Fifth
Avenue. His car is alone in the left lane clear to the intersection at Bouquet, where the light is
red. He begins to slow down 100 yards away when the light turns green.

Andy accelerates to pass the bus (shown below in orange) when a man steps out in front
of the bus, 15 feet in front of his car. The car comes to an immediate halt as the pedestrian
freezes in the intersection. Andy’s car is 2 feet from the man, but his foot didn’t reach the brake
until the car was 5 feet
away. As he breathes a sigh of
relief, Andy wonders why his
car stopped…

5 seconds earlier, when
Andy was approaching the
intersection, his car’s computer
had made a wireless connection
with the environmental sensing
infrastructure monitoring the
Fifth Avenue-Bouquet
intersection. The sensors
continuously detect vehicles,
pedestrians, and other moving
objects in the vicinity of the
intersection. The infrastructure
is the grey puck displayed at the top Figure 1.

5 tenths of a seconds earlier, a man had jumped out of the bus and made a quick turn in
front, hoping to cross the street before the light turned. The infrastructure’s sensors had tracked
the man’s movements and predicted that his path would move in front of Andy’s car. The
infrastructure instantaneously sent a signal to his car’s computer, alerting its obstacle avoidance
system to the pedestrian about to be in front of the car.

4 tenths of a second earlier, Andy’s car had automatically braked, 1 tenth of a second
before Andy had a view of the man and 3 tenths of a second before he could have applied the
brakes. Thanks to the environmental sensing infrastructure that monitors the intersection,
Andy’s car avoided an accident that neither he nor his car would have been able to prevent on
their own. The entire use case is depicted in a simplified form in Figure 2a below. Figure 2b
demonstrates what would otherwise occur without the environmental sensing infrastructure.

Figure 1. System graphical representation.

3

Figure 2a. Result of infrastructure in use Figure 2b. Result without infrastructure

3. System-Level Requirements

The System level requirements are driven by our objective of making intersections safe.
We do this by preventing collisions between vehicles and pedestrians.

The system-level requirements are categorized as:

a) Functional (F)
b) Performance (P)
c) Non-functional (NF).

Where [M.] denotes the requirement is mandatory.

3.1 Functional Requirements

Table 1. Functional Requirements

ID Title

 INFRASTRUCTURE:

M.F.1 Detect pedestrian

M.F.2 Track pedestrian

M.F.3 Predict trajectories of pedestrians

M.F.4 Publish trajectories to vehicles

 VEHICLE:

M.F.5 Alert driver to stop with enough time to stop safely

4

3.2 Performance Requirements

Table 2. Performance Requirements

ID Title Description

 INFRASTRUCTURE:

M.P.1 Detection Detect up to 3 pedestrian centroids with Euclidean distance error < 0.3m

M.P.2 Tracking Track up to 3 pedestrians within 20m of the infrastructure

M.P.3 Prediction Predict up to 3 pedestrians’ trajectories 1.2 seconds* into the future with an
average error of 0.5m

M.P.4 Cycle
Time

Time between first frame with a pedestrian to first published trajectory should be
less than 0.5 seconds.

 VEHICLE:

M.P.5 Vehicle Alert driver to stop short of intersection with approaching pedestrian >1.2
seconds* ahead of entry to intersection.

* 1.2 seconds = 1 second (stop time of vehicle at 30mph) + 0.2 seconds (human reaction time)

3.3 Non-Functional Requirements

Table 3. Non-Functional Requirements

ID Title Description

M.N.1 Stability Shall be physically stable

M.N.2 Electrically
Isolated

Shall be isolated electrically

M.N.3 Maintainability Shall be easy to move and maintain

M.N.4 Testing Shall be safe for testing

M.N.5 Regulations Shall adhere to strict university and legal regulations

5

4. Functional Architecture

Figure 3. Functional Architecture

The Functional architecture for the project is visualized in the Figure 3 above. Our project
involves two major subsystems in order to realize our project successfully.

1. Infrastructure: The inputs to the system are pedestrians who are within the twenty-meter

range of our infrastructure. They will be detected by our detection module from image
sensors. Then the tracking module will track each of the pedestrians and pass this information
to the trajectory prediction module. After generating the future points of each pedestrian, the
information is broadcast to the vehicle.

2. Vehicle: Vehicles can use the published pedestrian trajectory predictions and their own

kinematics to determine whether a collision is imminent. In the case of our system, we have
instead implemented the collision checking node itself within the infrastructure, though this is
not generally how autonomous vehicles will use the information. In our system the vehicle
sends all GPS information to the infrastructure during its approach. The infrastructure uses
this information to see if the trajectory of the vehicle and pedestrian will collide. If so, the
infrastructure sends a stop message to the vehicle, alerting the driver to stop.

6

5. System-level trade studies

5.1. Communication

 Our first choice for vehicle-to-infrastructure (“V2X”) communication was DSRC radio.
This is because it is the FCC-mandated standard for this form of communication. However, our
investigation into this technology quickly revealed that the hardware was prohibitively expensive
for our remaining $3200 budget. The other choices we considered are presented in Table 4
below.

Table 4. Communication subsystem trade study

 Hardware
requirements

Range Cost

Wi-Fi High ~100 meters Medium

Zigbee radio Low ~1 mile Low

Bluetooth Low ~100 meters High

 While each of these technologies satisfies what would be needed for the system, the cost
of bluetooth was undesirable. Furthermore, the outdoor testing that the system would require
makes the hardware requirements of Wi-Fi undesirable. Our final decision was to use XBee
radio modules, which can be operated in transparent mode that make software interfacing
extraordinarily easy over serial communication. Finally, there is plug-and-play hardware
available to connect XBees directly to an Arduino. The radio module and hardware for
connecting to Arduinos are shown in Figure 4 below.

Figure 4. Xbee Radio Modules

7

5.2. Vehicle Localization

The vehicle we had access to for testing was Oliver’s 2004 Honda CR-V. Because of the
onboard computing capacity of the vehicle, it was not an option to attempt to tap into the
vehicle’s computer to obtain GPS data, since the vehicle does not have a GPS. Furthermore, we
were unwilling to do this sort of bootstrapping, since we had found over the course of the fall
semester that while it made early development easy, troubleshooting could be virtually
impossible on a system that you do not have full access to. Thus, we decided our best option
was to build our own localization capability and attach it to the vehicle.

Table 5. Requirements for vehicle localization

Format Accuracy Refresh Rate Processor to be used

GPS required <0.3 meters >2 Hz ATMEGA 2560

 The format, accuracy, and refresh rate requirements leave many options available for this
subsystem, but performing everything on the ATMEGA 2560 is quite restrictive. A traditional
approach to this system is to use an extended Kalman filter with a combination of IMU, GPS,
odometry, and other sensor data. However, the computing required to run an EKF surpasses the
computational ability of the ATMEGA 2560. Thus, using only a single sensor to achieve the
accuracy in GPS coordinates was our only option, unless we were to
move to a bigger processor, which we did not have the resources for.
Luckily, this accuracy of GPS is achievable with Differential GPS.
We performed only a limited trade study of possible modules to use,
and decided to go with the module already in use by Team A, who
spoke well of it. The Emlid Reach GPS can be seen in Figure 5 on the
right.

5.3. Camera

Using a high resolution RGB camera was critical to our perception system, as the information
from the RGB camera would be used to extract useful information from the point cloud. There
were a number of parameters on which the cameras were evaluated to see which one actually
suits our needs. To accelerate the process for finding a camera for our project, we decided to
conduct trade study on some of the existing cameras which were present in the MRSD inventory.
Table 6 shows the comparison of different cameras based on some important parameters.

Evaluating the above cameras based on a set of parameters, it is clear that Lifecam is able to
satisfy all the requirements. It is both cost effective and has an easy interface with ROS. So the
team decided to use Lifecam.

Figure 5. Reach Emlid
GPS

8

Table 6. Trade study for Camera

Parameters Cost Resolution ROS Support
Availability

Easy interface

Point Gray -
Chameleon

$ 365 1296x964 Yes Yes

Ausdom AW615 $ 36.89 1280x720 No Yes

BlasterX senz3D $ 169.95 1920X1080 Yes No

Microsoft
Lifecam

$ 54.95 1280X720 Yes Yes

5.4. Detection

One of the most critical part in our system is the speed of the perception pipeline. If we
can speed up the perception pipeline without losing the accuracy, we can alert the vehicles earlier
if there is any potential collision. Therefore, we emphasize the speed of the detection subsystem
when we do the trade study. Among all the neural network approaches which usually have slow
inference time like 5-20 fps, YOLO 2 (You Only Look Once) [5], a Unified, Real-Time Object
Detection, outperforms all of them in its fast inference time in the range of 45 to 150 fps on the
Titan X GPU. It gets 88% top-5 accuracy in ImageNet 2012 and 70.4 in mAP while the famous
detection network Faster R-CNN [6] only has 70.7 in mAP.

5.5. Tracking Algorithm

 The trade study required for this subsystem was related to the data association method
used. The two options that we had was either using native nearest neighbor data association or
Hungarian method with Kalman filtering. Since our project is safety oriented, we decided to
choose the latter one as it provides more robust and accurate results for associating data between
time frames. The only remaining concern is related to the speed of this approach. After full
testing, we found out that the performance for both methods in our on-site embedded computer
are very similar. Thus, we chose the more robust algorithm namely Hungarian data association.

5.6. Prediction Algorithm

 The main trade study required for this subsystem was related to the prediction algorithm
used. The two options that we had was either a more classical regression-based methodology,
named Polynomial Regression, or a deep learning based approach, using Social LSTM [7]. The
main consideration when selecting the method was that it should be able to give reliable output
over long periods of time even when there is slightly noisy input data. It is difficult to estimate
the reliability of an algorithm hence we implemented a small proof-of-concept version of both
the algorithms. We learned that the polynomial regression algorithm was far more robust and

9

scalable to input data than the Social LSTM algorithm. Moreover, transferring deep-learning
systems from scenes seen in a database to actual real-world scenarios has not proven effective till
date, even in state-of-the-art systems. Given that ours is a safety-critical system, we chose the
more reliable algorithm in Polynomial Regression.

6. Cyberphysical Architecture

Figure 6. Cyberphysical Architecture

The Cyberphysical architecture for the project is visualized in the Figure 6 above. There are two
modules in our system: infrastructure and vehicle.

1. Infrastructure: The LiDAR and camera are mounted on the infrastructure. Data is sent
to the Jetson TX2 embedded computers through an Ethernet cable. The workstation
synchronizes LiDAR and RGB information, then compares and subtracts foreground
points from the pre-built background. After that, foreground points are clustered into
groups and the centroids of each group is calculated as a pedestrian’s position. However,
if there are two targets too close to each other, the system might mistakenly cluster two
people into one group with a single centroid. To avoid this, the system fuses the semantic
information from the RGB image with bounding boxes to correct the number of groups
using single-shot multi-box detector. After getting multiple target centroid coordinates,
the information is passed to the tracking system. The tracking system uses a Hungarian
algorithm to track the associated targets. Finally, the system predicts the trajectories of
the tracked targets using Social LSTM and sends the trajectories to the vehicle via WiFi.
All messages are transmitted within a ROS environment.

10

2. Vehicle: The vehicle is equipped with a differential GPS, Arduino Mega microcontroller,
and XBee radio module. The GPS itself is also connected to an antenna and a transceiver
(for communicating with the base GPS for real-time kinematics). The Arduino reads the
GPS data at 5Hz and broadcasts over our XBee radio network. All subscribed nodes, i.e.
the infrastructures, notify the vehicle via XBee when they are receiving the
information. The GPS coordinates and timestamp are then used to detect whether a
collision is imminent. In the event that it is, the infrastructure sends a stop message to the
vehicle. When the vehicle receives a stop message, it illuminates the stop LED’s for the
driver.

7. System description and evaluation

7.1 Overall System

The overall system can be depicted using this helpful flowchart that shows the processing
performed on input LiDAR and RGB data to the point that the vehicle receives the predicted
pedestrian trajectory and takes an action based on that information.

Figure 7: Algorithm Flowchart

11

7.2 Subsystem Descriptions

7.2.1 LiDAR-based Detection

One of the biggest difficulties for the self-driving car perception technologies is that how

the LiDAR can detect the moving objects while the cars are still moving. The dynamic of the
vehicle movement and the environment will cause the detection errors. However, our system
doesn’t have such issue since our infrastructure is static and the environment is also static. To do
the LiDAR-based detection on the fixed infrastructure, we record the pointcloud of the
background when there are no moving objects, and do the background subtraction to get the
foreground pointclouds when there are any moving objects. After getting the foreground
pointcloud, we use the nearest neighbors to cluster the pointclouds into groups. Finally, we find
the centroids of these clusters and output their coordinates.

7.2.2 Camera-based Detection

For detecting pedestrians using the camera data, we are using the YOLO v2 neural

network. The data from the camera comes at nearly 30fps however we chose to inly use the
compressed format of the image rather than the raw image in order to make the algorithm faster.
The neural network outputs the bounding boxes of 20 different objects with their detection
confidence to the LiDAR-Camera Fusion subsystem.

7.2.3 LiDAR-Camera Fusion

Our whole fusion algorithm is based on the fixed nature of the infrastructure. Thus, we
can treat all the points subtracted from background as true foreground. However, due to the lack
of context information, there are chances that multiple pedestrians would be classified as a single
pedestrian. This false detection will affect the performance of tracking and trajectory prediction
in later stages. This is the reason why we need RGB image to separate those wrongly clustered
points at least within the camera field of view.

The LiDAR 3D bounding box will be projected into camera frame with extrinsic and
intrinsic matrices given by calibration results. Simultaneously, image 2D bounding box would be
generated from either state-of-the-art deep learning detection network. For each overlapping pair
of LiDAR and RGB bounding boxes, we re-cluster all the point cloud data into K groups, with K
equals to number of RGB bounding box.

The fusion results are visualized below. There are 2 pedestrians walking within camera

frame. Since they are too closed to each other, LiDAR clustering node will treat them as a single
pedestrian as indicated by the red point. However, after fused the detection result from YOLO
network, the system can accurately detect each of them correctly as shown by the white points.

12

Figure 8. Fusion results.

7.2.4 Multi-pedestrian Tracking

Our tracking algorithm is based on Hungarian method (to assign pedestrian’s ID in
consecutive frames) and Kalman filter (to fuse prediction by dynamics and observation from
LiDAR point cloud). The input to the system are the pedestrians’ detected centroids in Cartesian
space. The output will be a list of pedestrian with unique id and historical positions.

Within the system, Kalman filter is used to refine pedestrians’ positions using noisy
sensor data and predict pedestrians’ positions at next time step for data association. Every
pedestrian will have a dynamics model with constant velocity between each time frame. Every
time a new observation comes in, it will update the Gaussian distribution for the pedestrian.
Since detected centroid positions are highly sensitive to pedestrian configuration like orientation
and waving hands, we also assign a large noise matrix to such observation. By doing so, Kalman
filter would utilize internal dynamics model to correct the observation noise.

Hungarian method is a combinatorial optimization algorithm that solves assignment

problem in polynomial time. Specifically, in our system, it is used to achieve data association
from consecutive frames. We constructed a cost matrix table in which each row associated with
an existing tracked object and each column associated with a new detected object. The elements
inside the table are calculated by the Euclidean distance between each pair of the points. After
that, Hungarian method will how to associate the point pairs in order to reduce the overall
association cost.

The final tracking results are shown below. Different color indicates different

pedestrians. As seen from the graph, our algorithm can track the pedestrian reliably with a frame
rate of 10.

13

Figure 9. Tracking results.

7.2.5 Multi-pedestrian Trajectory Prediction

The problem of trajectory prediction is essentially one of sequence prediction where,
given a sequence of input coordinates (of a moving pedestrian), we must identify a pattern and
use that pattern to predict the future sequence of coordinates of the same pedestrian. This
subsystem forms the crux of our entire system since the output of this subsystem is published to
the vehicle.

Our polynomial regression algorithm receives an input sequence of locations for each
pedestrian in the scene. One strength that we have embedded in the system is the complete
abstraction to the kind of sensors used and the rate at which they are publishing. This allowed us
to extend the system from LiDAR-only system at 10Hz to a LiDAR-camera fused system at 6Hz.
Based on a minimum observation window of 3 data points, we fit a polynomial curve to input
values. Using this curve, we extrapolated for the desired 1.2 seconds and published this as our
predicted trajectory.

This algorithm also has the advantage that we can adapt parameters to improve the
results. We played with different degree polynomials and observations lengths. We finally settled
on a second degree polynomial fit with a maximum observation length of 1.2 seconds. We tested
this algorithm on live pedestrian data and were satisfied with the results that we were getting.
The graphs in Figure 10 below show the performance for some specific pedestrian trajectories.

a. (b) (c)

14

 (d) (e)

Figure 10. Graphs of trajectory prediction for trajectories of different radii of curvature (r).
(a) r = ∞, (b) r = 3m, (c) r = 2m, (d) r = 1m, (e) r = 0m (right angle)

The algorithm also required minimal addition to extend from single pedestrian trajectory
prediction to multiple pedestrian trajectory prediction. The Fig. 11 below shows an RViz display
where the trajectory of three pedestrians is being predicted to a high level of accuracy.

Figure 11. RViz screenshot of predicted trajectory for 3 pedestrians

7.2.6 Sensing Infrastructure

An integral portion of our project is the mounting and placement of the sensor suite in the
environment. The initial idea is to have a cluster of a LiDAR and cameras, as described below,
located at an intersection. We are using a sturdy tripod as the base for the sensor mount since this
gives us the sturdiness of a fixed infrastructure as well as the mobility to test in any location that
we need. The tripod also allows for a platform to house the electrical subsystem as described
now.

The Power Distribution Board (PDB) was designed to power the LIDAR, Jetson TX2, Microsoft
Lifecam camera from an 11.1V battery. The PDB involves overvoltage, overcurrent, and reverse
voltage protection. A block diagram representing the current electrical system is shown in figure
11 below. An Xbee USB module will also be attached to the Jetson TX2 which requires power.

15

Figure 12. Electrical System

The PDB is operational and below are the results for the test conducted on the PDB.

Table 7. PDB Testing

Device Test Input
Voltage (V)

Input Current
Capacity(A)

Rated
Output

Voltage (V)

Observed
Voltage(V)

VLP-16
LIDAR 11.1 0.89 11.1 11.09

Jetson TX2 11.1 0.95 11.1 11.09

 Camera 11.1 0.3 5 5

7.2.7 GPS-based Localization

 In this semester we had to localize an actual car in its environment to predict whether
there would be a collision between the car and pedestrian. To perform this, we decided to use the
Reach Emlid GPS which is an RTK module giving high accuracy location information. It
requires a Base module to be set up as well as a Rover module to ensure high accuracy. This is
convenient for us since we already have a static infrastructure to place the Base module. The
system is fairly easy to work with and we were able to receive Serial data from the GPS modules
with some additional work. The TinyGPS library was invaluable in helping us to parse the
NMEA format to extract the latitude and longitude information. This was then published to the
infrastructure from the car as explained in the next section.

16

7.2.8 Communication

The vehicle was equipped with a simple Arduino Mega microcontroller attached to an XBee
radio and the GPS. The XBee hooked up to the vehicle was used in broadcast mode on a private
network at a baud rate of 9600. Broadcast mode allows the vehicle to connect with any
infrastructure that can receive its signal. The XBee radios on the infrastructures use the MAC
address of the vehicle’s radio to send their information directly to the vehicle. The information
communicated consists of only three small string messages: stop, go,
<latitude,longitude>. Thus, this small bandwidth network was able to communicate with a
small baud rate at a large range.

7.3 Spring Validation Experiment (SVE) Performance Evaluation

For the SVE we had five tests which displayed the performance of each important subsystem
corresponding to the performance requirements as well as the performance of the entire system.
We were able to pass all performance requirements as stated in Section 3.2. The exact
performance is recorded in the Table 8. It is important to note that these are repeatable results as
we were able to achieve similarly positive results in several tests as well as in both the SVE and
SVE Encore.

Table 8. SVE Test Performance

SVE Test Quantitative Performance

Detection Accuracy 0.12m

Tracking Consistency Continuous tracking

Pedestrian trajectory prediction 0.2745m

Cycle Time 0.24s

Vehicle Collision Avoidance Success Rate 100%

7.4 Strengths and Weaknesses

7.4.1 Strengths

1. Detection Accuracy: The detection accuracy tested at an average of 0.12m. This was
excellent, considering our requirement of less than 0.3m. We are particularly happy with
this because we the test cases were difficult with multiple pedestrians standing close to
each other.

17

2. Good Cycle time: Time taken between when the first pedestrian is detected to the first
published trajectory was around 0.29 seconds. This is a terrific refresh rate for our
system with the additional and costly image detection and fusion algorithms.

3. Robustness to Environment: We tested the entire system in heavy rainfall and wind for
several hours and were still able to achieve adequate results. This is important to a real-
world implementation of our system since the system should work in these conditions as
well.

4. Graphical User Interface (GUI): The GUI developed for demonstrating our performance
requirements showcased our requirements clearly and effectively.

5. Extensibility: Our software platform has now been designed such that we have the ability
to work with one or many sensors

6. Scalability: Our infrastructure is currently self-contained; this means that if we wanted to
have multiple instances of this infrastructure it would be extremely easy to do so.

7. Team: We have an excellent team with a wide range of skill sets. This is a key strength
that helped us in developing this project in a very short span of time.

7.4.2 Weaknesses

1. Communication: While our Zigbee-based communication system was adequate for our
requirements, it is not robust enough to extend to several cars as would be typically
required of the system.

2. Robustness: The system is good enough to work for multiple pedestrians but it is a
difficult problem in general to make the system to work for many more pedestrians.

3. Background Registration: To make the system completely autonomous for long periods
of time, we would need to develop an automatic system of registering new backgrounds
to the old one periodically.

7.4.3 Opportunities for improvement

1. The range of the detection algorithm satisfied the requirements that we had defined but

the performance dipped towards end of the range. Hence, we intend to solve the issue
with fusion of camera data.

2. The trajectory prediction subsystem worked well and was able to recover from erroneous
predictions very quickly. However, the performance when using the fused data is not as
good as the performance when using only the LiDAR data. This shows that there is scope
for improvement in this subsystem.

3. The speed when using the fusion algorithm is slow causing some lag in the system. This
is the reason we attempted to keep the cycle time in check but there is still some scope for
this issue to be solved.

18

8. Project management

8.1 Schedule

Figure 13. Work breakdown structure

We have followed a deliverable oriented WBS with 4 functional branches -

infrastructure, perception, vehicle and communication. The last 2 branches apply to all systems -
integration and management. The green work packages have been completed, the blue work
packages are in progress, and the red work packages have not been started yet. At the time of
this report, the work is completed, thus all items are green.

The table below depicts a simplified version of the schedule for the spring semester,
which maps directly to the work breakdown structure above. We completed everything that we
intended to complete for the Spring semester by nearly keeping to the schedule laid out below. It
was mainly between Progress Review 10-12 that we lagged behind slightly. Luckily we had kept
a buffer period of a week and hence were able to complete the validation experiments at the end
of the semester successfully.

19

Table 9. Spring schedule (Yellow = Progress Review, Red = SVE, Blue = Allotted time for task)

8.2 Budget*

* Full parts list is included in the appendix

The budget of $5000 that was provided to us was substantial. Through judicious use of existing
MRSD resources and the budget, we were comfortably able to purchase all essential items (and
some non-essential items). We used two Velodyne VLP-16 LiDARs from existing MRSD
inventory which allowed us to stay within budget. All our other purchases were made when it
was an absolute necessity and by searching for the best cost-effective option. Our best purchase
was the DeWalt Power Hub which allowed us to successfully test our system outdoors for
extended periods of time. Moreover, this will be a valuable commodity to all teams in coming
years whenever they need to do outdoor testing. Another very useful purchase was the Reach
Emlid RTK GPS which allowed us to successfully localize our vehicle using just one sensor and

20

without the additional overhead of fusing multiple sensors. It will also be a very useful purchase
for the incoming batch.

Starting Budget: $5000
Budget Left: $600 (12%)

Table 10. Big ticket expenditures from budget

Item Price

Zed Camera 450

Jetson TX2 x 2 640

Electrical Components 350

Emlid Reach GPS and antennae 960

Communication hardware 200

Tripods 300

DeWalt Power Hub 500

Vehicle Costs 250

Other (Primarily testing) 750

TOTAL $4400

Figure 14. Pie chart showing the major expenditures

21

8.3 Risk management

Our risk management over both semesters has been fairly accurate although we have not kept to
strictly following and updating the list. We usually sat down and tried to predict what might
affect us adversely in the semester and kept a watchful eye on those risks. Our mitigation
strategy usually came down to determination and quick thinking to find a solution that would
work robustly and reliably.

Table 11. List of risks and corresponding mitigation strategies

Risk
ID

Risk
Definition Type Likelihood

(1-5)
Consequence

(1-5)
Mitigation
Strategy

1 School work
Overwhelming Schedule 5 4

Help each other with
work, get ahead when

possible

2 Personnel
Availability Schedule 2 2

Share schedules ahead
of time, plan work

accordingly

3 Localization Technical 3 5 Use LiDAR as a
backup

4
Loss of

Communicatio
n

Technical 4 2
Build vehicle trajectory
prediction to be robust

to packet loss

5 Camera LiDAR
Calibration Technical 5 5 Control the

Environment

6 Jetson TX2
Performance Technical 3 4 Optimizing Algorithms

7 Weather Non-Technical 5 5 Have a video backup of
functional system

8

Multiple
Sensors/

Infrastructure
Integration

Failure

Technical 2 4

Design the system
where each subsystem

can function
independently

22

Figure 15. Likelihood-Consequence Risk Table

9. Conclusions

9.1 Lessons Learned

A team project of this scale brings up several challenges which provides a lot of scope for
learning. Some of the lessons that we learned are summarized below:

Management:

● Requirements should drive design, not the state-of-the-art methods
● Requirements should be defined not based on what is possible but on what the

stakeholders ask for
● Division of work should be done based on capability and interest; but it’s important each

member in the team understands his/her role in the team
● It is beneficial if each person has a “buddy” so that if the lead on a subsystem is busy or

unable to perform the work for any reason, there is someone who has a general idea of
what has been implemented in the subsystem and what work is left

● Defining intermediate goals (e.g. Progress Review goals) are very helpful in making
incremental progress without feeling daunted by the work at hand

Software:
● Version control is important as it provides a safeguard against possible mistakes as well

as easy access to the codebase
● Maintaining a uniform package requirement is important as it ensures team members do

not inadvertently install packages that might conflict with another part of the system
● Maintain a detailed README file to ensure that the basic requirements of the system are

listed
● Record lots of Rosbag files of raw sensor data which will allow unit testing of each

subsystem
● Robustness is extremely important for each subsystem; keep testing conditions in mind

during development and aim to meet it even in the worst-case scenarios, not in the best-
case or average-case scenarios

23

Testing/Validation:
• Ensure that the list of commands required to start the system is well documented so that

even a person new to the system will be able to use it
● Perform testing from a completely unbiased viewpoint, this allows you to realize errors in

the system rather than sweep them under the rug
● After testing the system once, it is important to branch your code and work in a “demo-

oriented” manner to ensure that the system has more robustness
● When performing the validation experiment, it is important that you control the

environment and the experiment - stick to the script as best you can
● It is important to achieve repeatability of the system before considering that the system

has been completed; the aim should be to get the system to a point that it works when you
switch it on, not on the third or fourth attempt

9.2 Future Work

● Structure infrastructure in a client-server architecture instead of performing the
computation on-board

● Integrate multiple infrastructures to allow for a better error-catching as well as gathering
more useful information

● Switch the communication to a faster and more robust system such as DSRC
● Optimize the deep learning networks to allow for a faster system since this is critical in

safety systems
● There are more sensors that can be useful additions to this system such as infra-red or

thermal cameras; the system has been built keeping modularity in mind so adding more
sensors should be considerably easier

● Make the electronics of the system self-contained and attached to the infrastructures

10. References

1. https://www.autoaccident.com/statistics-on-intersection-accidents.html
2. Crash factors in Intersection-related crashes: an on-scene perspective.
3. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366
4. https://mrsdprojects.ri.cmu.edu/2016teamd/
5. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. You Only Look Once: Unified,
Real-time Object Detection
6. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks
7. Alahi paper. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese. Social
LSTM: Human Trajectory Prediction in Crowded Spaces. In CVPR, 2016.
8. https://github.com/mrsd16teamd

https://www.autoaccident.com/statistics-on-intersection-accidents.html
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366
https://mrsdprojects.ri.cmu.edu/2016teamd/
https://arxiv.org/search?searchtype=author&query=Ren%2C+S
https://arxiv.org/search?searchtype=author&query=He%2C+K
https://arxiv.org/search?searchtype=author&query=Girshick%2C+R
https://arxiv.org/search?searchtype=author&query=Sun%2C+J
https://github.com/mrsd16teamd

24

Appendix: Parts List

1 Seville Classics Industrial All-Purpose Utility Cart, NSF Listed

2 Jiffyloc Heavy Duty Extension Pole, 4 - 8 feet, Made In USA

3 Jiffyloc Quick Release Adaptor

4 ZED Stereo Camera

5 Set of 10 5/32" pins

6 Jiffyloc angle adaptor

7 Jiffyloc Heavy Duty Extension Pole, 4 - 8 feet, Made In USA

8 Jiffyloc Quick Release Adaptor

9 ZED Stereo Camera

10 <-(set of ten) 5/32" pins

11 Jiffyloc angle adaptor

12 Jiffyloc male thread adaptor

13 NVIDIA Jetson TX2 Developer Kit

14 50 ft, 9 gauge wire

15 range extender

16 Green toggle laser pointer

17 Barrel Jack Connector

18 10.0µF ceramic capacitors

19 TVS DIODE

20 TVS DIODE

21 TVS DIODE

22 SCHOTTKEY DIODE

23 TVS DIODE

24 TVS DIODE

25 LITTLEFUSE

26 LITTLEFUSE

27 LITTLEFUSE

28 LITTLEFUSE

29 SIMPLE SWITCHER® Power Converter 150 kHz 3A Step-

25

Down Voltage Regulator

30 INDUCTOR

31 RESISTOR, American symbol

32 LED

33 12V to 5V DC/DC Converter

34 Multistar 11.1V battery

35 Colcase LiPo battery explosion proof case

36 Voltage checker

37 Barrel jack connectors

38 DC barrel pigtail connector

39 Multistar 11.1V battery

40 Tripod

41 Mount stock

42 Xbee pro

43 Xbee dongle

44 Xbee shield

45 REACH RTK KIT

46 3DR 915 Mhz (US) Telemetry Radio

47 GNSS Antenna Pack with Cables

48 Green toggle laser pointer

49 3DR 915 Mhz (US) Telemetry Radio

50 Xbee shield

51 Tripod

52 Jetson TX2

53 Keyboard

54 HDMI Cables

55 MZ-7KE256BW

56 CONN ADAPT MCX PLUG TO SMA JACK

57 STDR2000101

58 HKPilot transceiver telemetry radio set

26

59 Laser-to-Lidar Nut

60 LITTLEFUSE

61 LITTLEFUSE

62 10.0µF ceramic capacitors

63 Barrel Jack Connector

64 XT-60 Male/Female Pair

65 SMD LED - Green 1206 (strip of 25)

66 250 Ohm Resistor

67 750 Ohm Resistor

68 HDMI to VGA Connector

69 USb to Mini-USB

70
Button Head Hex Drive Screws (Passivated 18-8 Stainless Steel, M3 x
0.50 mm Thread, 6mm Long)- McMaster Carr

71 CABLE ASSY STR 2.5MM 6' 24 AWG

72 Spiral Cable Management

73 Spiral Zipper Cable Management

74 Barrel Jack Connector

75 LITTLEFUSE

	Abstract
	1. Project Description
	2. Use Case
	3. System-Level Requirements
	3.1 Functional Requirements
	3.2 Performance Requirements
	3.3 Non-Functional Requirements

	4. Functional Architecture
	5. System-level trade studies
	5.1. Communication
	5.2. Vehicle Localization
	5.3. Camera
	5.4. Detection
	5.5. Tracking Algorithm
	5.6. Prediction Algorithm

	6. Cyberphysical Architecture
	7. System description and evaluation
	7.1 Overall System
	7.2 Subsystem Descriptions
	7.2.1 LiDAR-based Detection
	7.2.2 Camera-based Detection
	7.2.3 LiDAR-Camera Fusion
	7.2.4 Multi-pedestrian Tracking
	7.2.5 Multi-pedestrian Trajectory Prediction
	7.2.6 Sensing Infrastructure
	7.2.7 GPS-based Localization
	7.2.8 Communication

	7.3 Spring Validation Experiment (SVE) Performance Evaluation
	7.4 Strengths and Weaknesses
	7.4.1 Strengths
	7.4.2 Weaknesses
	7.4.3 Opportunities for improvement

	8. Project management
	8.1 Schedule
	8.2 Budget*
	8.3 Risk management

	9. Conclusions
	9.1 Lessons Learned
	9.2 Future Work

	10. References
	Appendix: Parts List

