
 
 

 
Final Report 

 
 

Team E: Beyond Sight 

Environmental Sensing Infrastructure for 
Autonomous Driving 

 
Team Members: 

Rohit Murthy 
Vivek GR  

Oliver Krengel 
Chien Chih Ho 

Peng Sheng Guo 
 

Sponsors:  
David Held 
John Dolan 

Dimi Apostolopoulos 
 

May 9, 2018 

 
 
 
 
 
 
 
 



i 
 

Abstract 
 

An oft-repeated promise of self-driving car makers and advocates is the reduction in car-
related injuries and fatalities that will accompany the adoption of autonomous driving 
technology.  While the authors of this report agree that this assessment is correct, we aim to 
address a fundamental problem that self-driving vehicles cannot solve on their own: occlusion.  
The majority of car accidents occur at intersections, and many of these involve moving objects 
that enter a driver’s field of vision without sufficient time to prevent a collision.  By themselves, 
self-driving vehicles face the same problem, they cannot prevent collisions with objects that they 
cannot sense.  This report proposes a novel method of accident prevention in these occluded 
scenarios.  By embedding sensors in occlusion-free vantage points that can communicate with 
approaching vehicles, accidents can be prevented with moving obstacles that the vehicles 
themselves cannot sense.  This report covers the requirements, development, testing, and 
deployment of the system described.  In this proof-of-concept, data is fused between the 
environmental sensing infrastructure and GPS data from an approaching vehicle to provide an 
early warning system for the driver.   
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1. Project Description 
 

Every year in the United States, approximately 2.5 million accidents are reported at 
intersections, as reported by the Federal Highway Commission [1].  The same agency reports that 
intersection accidents account for 40% of all crashes.  Even more worrisome, 50% of all serious 
collisions and 20% of all fatal collisions occur at intersections. 

 
 A study conducted by the National Highway Traffic Safety Administration found 
“obstructed view” as a primary reason for intersection accidents across drivers of all ages and 
genders [2].  This will come as no surprise to any driver, though.  Intersections pose difficulties 
that drivers do not experience on 2 lane roads, such as: 
 

● Timed signals to monitor 
● Cars from the side turning in front of driver 
● Cars from in front turning in front of driver 
● Cars stopping in front of driver to turn 
● Pedestrians crossing in front of driver 
● Pedestrians crossing beside driver 

 
With all these reasons accounted for, it is no wonder how many accidents occur at 

intersections.  In many cases, drivers simply have too many obstacles to account for at any given 
time. The proliferation of self-driving cars may assist vehicles at intersections in accounting for 
many obstacles simultaneously, but the problem of occluded viewpoints remains.  With only car-
mounted sensors, vehicles driving through intersections may not be able to detect obstacles such 
as crossing vehicles and pedestrians if their view is occluded by larger vehicles.  The use of 
information gathered on sensors outside the vehicle will therefore be necessary to solve the 
occlusion problem. 
 

To solve the occlusion problem, we are proposing an infrastructure system at 
intersections that will be able to detect moving objects and predict their 
movements.  Furthermore, the system will be designed to interface with vehicles approaching 
and passing through intersections, so that it can communicate with these vehicles.  By utilizing 
path prediction and communication, the system will be able to detect would-be collisions in 
advance and alert vehicles, thus preventing collisions.   
 

In this project, we start by outlining the system requirements in Sections 3-5 based on 
which the system is designed. we have developed a LIDAR/Camera-based system that detects, 
track, and predicts pedestrian trajectories which is detailed in Section 7.  This data is fused with 
incoming GPS data from an approaching vehicle over radio.  By using the predicted paths of the 
pedestrians and the vehicle, would-be collisions are detected in advance, and the driver of the 
vehicle is sent an alert to stop the car in order to prevent the collision.   

 
The system has been tested on a controlled environment modelled off of a standard four-

way intersection.  By utilizing high vantage points capable of viewing all approaching foot and 
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vehicle traffic, even in the event of large vehicles entering the area, we demonstrate the 
reliability of such a system to prevent the hardest-to-avoid accidents. 

2. Use Case 
 

Andy is driving to work along his normal route, down Forbes avenue through 
Oakland.  He is attending to the road but he is in autopilot, it is early in the morning and he has 
made this commute hundreds of times.  He turns onto Bellefield then makes a left on Fifth 
Avenue.  His car is alone in the left lane clear to the intersection at Bouquet, where the light is 
red.  He begins to slow down 100 yards away when the light turns green.   
 

Andy accelerates to pass the bus (shown below in orange) when a man steps out in front 
of the bus, 15 feet in front of his car.  The car comes to an immediate halt as the pedestrian 
freezes in the intersection.  Andy’s car is 2 feet from the man, but his foot didn’t reach the brake 
until the car was 5 feet 
away.  As he breathes a sigh of 
relief, Andy wonders why his 
car stopped… 
 

5 seconds earlier, when 
Andy was approaching the 
intersection, his car’s computer 
had made a wireless connection 
with the environmental sensing 
infrastructure monitoring the 
Fifth Avenue-Bouquet 
intersection.  The sensors 
continuously detect vehicles, 
pedestrians, and other moving 
objects in the vicinity of the 
intersection.  The infrastructure 
is the grey puck displayed at the top Figure 1. 
 

5 tenths of a seconds earlier, a man had jumped out of the bus and made a quick turn in 
front, hoping to cross the street before the light turned.  The infrastructure’s sensors had tracked 
the man’s movements and predicted that his path would move in front of Andy’s car.  The 
infrastructure instantaneously sent a signal to his car’s computer, alerting its obstacle avoidance 
system to the pedestrian about to be in front of the car. 
 

4 tenths of a second earlier, Andy’s car had automatically braked, 1 tenth of a second 
before Andy had a view of the man and 3 tenths of a second before he could have applied the 
brakes.  Thanks to the environmental sensing infrastructure that monitors the intersection, 
Andy’s car avoided an accident that neither he nor his car would have been able to prevent on 
their own.  The entire use case is depicted in a simplified form in Figure 2a below.  Figure 2b 
demonstrates what would otherwise occur without the environmental sensing infrastructure. 

Figure 1. System graphical representation. 
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Figure 2a. Result of infrastructure in use                           Figure 2b. Result without infrastructure 

 

3. System-Level Requirements 
 

The System level requirements are driven by our objective of making intersections safe.  
We do this by preventing collisions between vehicles and pedestrians. 
 
The system-level requirements are categorized as: 

a) Functional (F) 
b) Performance (P)  
c) Non-functional (NF).  

Where [M.] denotes the requirement is mandatory. 
 
3.1 Functional Requirements   
 

Table 1. Functional Requirements 

ID Title 

 INFRASTRUCTURE: 

M.F.1 Detect pedestrian 

M.F.2 Track pedestrian 

M.F.3 Predict trajectories of pedestrians 

M.F.4 Publish trajectories to vehicles 

 VEHICLE: 

M.F.5 Alert driver to stop with enough time to stop safely 
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3.2 Performance Requirements 
 

Table 2. Performance Requirements 

ID Title Description 

  INFRASTRUCTURE: 

M.P.1 Detection Detect up to 3 pedestrian centroids with Euclidean distance error < 0.3m 

M.P.2 Tracking Track up to 3 pedestrians within 20m of the infrastructure 

M.P.3 Prediction Predict up to 3 pedestrians’ trajectories 1.2 seconds* into the future with an 
average error of 0.5m 

M.P.4 Cycle 
Time 

Time between first frame with a pedestrian to first published trajectory should be 
less than 0.5 seconds. 

  VEHICLE: 

M.P.5 Vehicle Alert driver to stop short of intersection with approaching pedestrian >1.2 
seconds* ahead of entry to intersection. 

 

* 1.2 seconds = 1 second (stop time of vehicle at 30mph) + 0.2 seconds (human reaction time) 

3.3 Non-Functional Requirements 
 

Table 3. Non-Functional Requirements 

ID Title Description 

M.N.1 Stability Shall be physically stable 

M.N.2 Electrically 
Isolated 

Shall be isolated electrically 

M.N.3 Maintainability Shall be easy to move and maintain 

M.N.4 Testing Shall be safe for testing 

M.N.5 Regulations Shall adhere to strict university and legal regulations 

 



5 
 

4. Functional Architecture 

 
Figure 3. Functional Architecture 

 
The Functional architecture for the project is visualized in the Figure 3 above. Our project 
involves two major subsystems in order to realize our project successfully. 
 
1. Infrastructure: The inputs to the system are pedestrians who are within the twenty-meter 

range of our infrastructure. They will be detected by our detection module from image 
sensors. Then the tracking module will track each of the pedestrians and pass this information 
to the trajectory prediction module. After generating the future points of each pedestrian, the 
information is broadcast to the vehicle. 

 
2. Vehicle: Vehicles can use the published pedestrian trajectory predictions and their own 

kinematics to determine whether a collision is imminent.  In the case of our system, we have 
instead implemented the collision checking node itself within the infrastructure, though this is 
not generally how autonomous vehicles will use the information.  In our system the vehicle 
sends all GPS information to the infrastructure during its approach.  The infrastructure uses 
this information to see if the trajectory of the vehicle and pedestrian will collide.  If so, the 
infrastructure sends a stop message to the vehicle, alerting the driver to stop. 
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5. System-level trade studies 
 
5.1. Communication 
 
 Our first choice for vehicle-to-infrastructure (“V2X”) communication was DSRC radio.  
This is because it is the FCC-mandated standard for this form of communication.  However, our 
investigation into this technology quickly revealed that the hardware was prohibitively expensive 
for our remaining $3200 budget.  The other choices we considered are presented in Table 4 
below. 
 

Table 4. Communication subsystem trade study 
 

 Hardware 
requirements 

Range Cost 

Wi-Fi High ~100 meters Medium 

Zigbee radio Low ~1 mile Low 

Bluetooth Low ~100 meters High 
 
 While each of these technologies satisfies what would be needed for the system, the cost 
of bluetooth was undesirable.  Furthermore, the outdoor testing that the system would require 
makes the hardware requirements of Wi-Fi undesirable.  Our final decision was to use XBee 
radio modules, which can be operated in transparent mode that make software interfacing 
extraordinarily easy over serial communication.  Finally, there is plug-and-play hardware 
available to connect XBees directly to an Arduino.  The radio module and hardware for 
connecting to Arduinos are shown in Figure 4 below. 
 

 
 

Figure 4. Xbee Radio Modules 
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5.2. Vehicle Localization 
 

The vehicle we had access to for testing was Oliver’s 2004 Honda CR-V.  Because of the 
onboard computing capacity of the vehicle, it was not an option to attempt to tap into the 
vehicle’s computer to obtain GPS data, since the vehicle does not have a GPS.  Furthermore, we 
were unwilling to do this sort of bootstrapping, since we had found over the course of the fall 
semester that while it made early development easy, troubleshooting could be virtually 
impossible on a system that you do not have full access to.  Thus, we decided our best option 
was to build our own localization capability and attach it to the vehicle. 
 

Table 5. Requirements for vehicle localization 
 

Format Accuracy Refresh Rate Processor to be used 

GPS required <0.3 meters >2 Hz ATMEGA 2560 

 
 The format, accuracy, and refresh rate requirements leave many options available for this 
subsystem, but performing everything on the ATMEGA 2560 is quite restrictive.  A traditional 
approach to this system is to use an extended Kalman filter with a combination of IMU, GPS, 
odometry, and other sensor data.  However, the computing required to run an EKF surpasses the 
computational ability of the ATMEGA 2560.  Thus, using only a single sensor to achieve the 
accuracy in GPS coordinates was our only option, unless we were to 
move to a bigger processor, which we did not have the resources for.  
Luckily, this accuracy of GPS is achievable with Differential GPS.  
We performed only a limited trade study of possible modules to use, 
and decided to go with the module already in use by Team A, who 
spoke well of it.  The Emlid Reach GPS can be seen in Figure 5 on the 
right. 
 
5.3. Camera 
 
Using a high resolution RGB camera was critical to our perception system, as the information 
from the RGB camera would be used to extract useful information from the point cloud. There 
were a number of parameters on which the cameras were evaluated to see which one actually 
suits our needs. To accelerate the process for finding a camera for our project, we decided to 
conduct trade study on some of the existing cameras which were present in the MRSD inventory. 
Table 6 shows the comparison of different cameras based on some important parameters. 
 
Evaluating the above cameras based on a set of parameters, it is clear that Lifecam is able to 
satisfy all the requirements. It is both cost effective and has an easy interface with ROS. So the 
team decided to use Lifecam. 
 
 
 
 
 

Figure 5. Reach Emlid 
GPS 
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Table 6. Trade study for Camera 

Parameters Cost Resolution  ROS Support 
Availability 

Easy interface 

Point Gray -
Chameleon 

$ 365 1296x964 Yes Yes 

Ausdom AW615 $ 36.89 1280x720 No Yes 

BlasterX senz3D $ 169.95 1920X1080 Yes No 

Microsoft 
Lifecam 

$ 54.95 1280X720 Yes Yes 
 

 
 
5.4. Detection 
 

One of the most critical part in our system is the speed of the perception pipeline. If we 
can speed up the perception pipeline without losing the accuracy, we can alert the vehicles earlier 
if there is any potential collision. Therefore, we emphasize the speed of the detection subsystem 
when we do the trade study. Among all the neural network approaches which usually have slow 
inference time like 5-20 fps, YOLO 2 (You Only Look Once) [5], a Unified, Real-Time Object 
Detection, outperforms all of them in its fast inference time in the range of 45 to 150 fps on the 
Titan X GPU. It gets 88% top-5 accuracy in ImageNet 2012 and 70.4 in mAP while the famous 
detection network Faster R-CNN [6] only has 70.7 in mAP. 
 
5.5. Tracking Algorithm 
 
 The trade study required for this subsystem was related to the data association method 
used. The two options that we had was either using native nearest neighbor data association or 
Hungarian method with Kalman filtering. Since our project is safety oriented, we decided to 
choose the latter one as it provides more robust and accurate results for associating data between 
time frames. The only remaining concern is related to the speed of this approach. After full 
testing, we found out that the performance for both methods in our on-site embedded computer 
are very similar. Thus, we chose the more robust algorithm namely Hungarian data association.  
 
5.6. Prediction Algorithm 
  
 The main trade study required for this subsystem was related to the prediction algorithm 
used. The two options that we had was either a more classical regression-based methodology, 
named Polynomial Regression, or a deep learning based approach, using Social LSTM [7]. The 
main consideration when selecting the method was that it should be able to give reliable output 
over long periods of time even when there is slightly noisy input data. It is difficult to estimate 
the reliability of an algorithm hence we implemented a small proof-of-concept version of both 
the algorithms. We learned that the polynomial regression algorithm was far more robust and 
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scalable to input data than the Social LSTM algorithm. Moreover, transferring deep-learning 
systems from scenes seen in a database to actual real-world scenarios has not proven effective till 
date, even in state-of-the-art systems. Given that ours is a safety-critical system, we chose the 
more reliable algorithm in Polynomial Regression. 
 

6. Cyberphysical Architecture

 
Figure 6. Cyberphysical Architecture 

 
The Cyberphysical architecture for the project is visualized in the Figure 6 above. There are two 
modules in our system: infrastructure and vehicle. 
 

1. Infrastructure: The LiDAR and camera are mounted on the infrastructure. Data is sent 
to the Jetson TX2 embedded computers through an Ethernet cable. The workstation 
synchronizes LiDAR and RGB information, then compares and subtracts foreground 
points from the pre-built background. After that, foreground points are clustered into 
groups and the centroids of each group is calculated as a pedestrian’s position. However, 
if there are two targets too close to each other, the system might mistakenly cluster two 
people into one group with a single centroid. To avoid this, the system fuses the semantic 
information from the RGB image with bounding boxes to correct the number of groups 
using single-shot multi-box detector. After getting multiple target centroid coordinates, 
the information is passed to the tracking system. The tracking system uses a Hungarian 
algorithm to track the associated targets. Finally, the system predicts the trajectories of 
the tracked targets using Social LSTM and sends the trajectories to the vehicle via WiFi.  
All messages are transmitted within a ROS environment. 
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2. Vehicle: The vehicle is equipped with a differential GPS, Arduino Mega microcontroller, 
and XBee radio module.  The GPS itself is also connected to an antenna and a transceiver 
(for communicating with the base GPS for real-time kinematics).  The Arduino reads the 
GPS data at 5Hz and broadcasts over our XBee radio network.  All subscribed nodes, i.e. 
the infrastructures, notify the vehicle via XBee when they are receiving the 
information.  The GPS coordinates and timestamp are then used to detect whether a 
collision is imminent.  In the event that it is, the infrastructure sends a stop message to the 
vehicle.  When the vehicle receives a stop message, it illuminates the stop LED’s for the 
driver. 

7. System description and evaluation 
 
7.1 Overall System 
 
The overall system can be depicted using this helpful flowchart that shows the processing 
performed on input LiDAR and RGB data to the point that the vehicle receives the predicted 
pedestrian trajectory and takes an action based on that information. 
 

 
Figure 7: Algorithm Flowchart 
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7.2 Subsystem Descriptions 
 
7.2.1 LiDAR-based Detection 

 
One of the biggest difficulties for the self-driving car perception technologies is that how 

the LiDAR can detect the moving objects while the cars are still moving. The dynamic of the 
vehicle movement and the environment will cause the detection errors. However, our system 
doesn’t have such issue since our infrastructure is static and the environment is also static. To do 
the LiDAR-based detection on the fixed infrastructure, we record the pointcloud of the 
background when there are no moving objects, and do the background subtraction to get the 
foreground pointclouds when there are any moving objects. After getting the foreground 
pointcloud, we use the nearest neighbors to cluster the pointclouds into groups. Finally, we find 
the centroids of these clusters and output their coordinates. 
 
7.2.2 Camera-based Detection 

 
For detecting pedestrians using the camera data, we are using the YOLO v2 neural 

network. The data from the camera comes at nearly 30fps however we chose to inly use the 
compressed format of the image rather than the raw image in order to make the algorithm faster. 
The neural network outputs the bounding boxes of 20 different objects with their detection 
confidence to the LiDAR-Camera Fusion subsystem.  
 
7.2.3 LiDAR-Camera Fusion 
  

Our whole fusion algorithm is based on the fixed nature of the infrastructure. Thus, we 
can treat all the points subtracted from background as true foreground. However, due to the lack 
of context information, there are chances that multiple pedestrians would be classified as a single 
pedestrian. This false detection will affect the performance of tracking and trajectory prediction 
in later stages. This is the reason why we need RGB image to separate those wrongly clustered 
points at least within the camera field of view.  
 

The LiDAR 3D bounding box will be projected into camera frame with extrinsic and 
intrinsic matrices given by calibration results. Simultaneously, image 2D bounding box would be 
generated from either state-of-the-art deep learning detection network. For each overlapping pair 
of LiDAR and RGB bounding boxes, we re-cluster all the point cloud data into K groups, with K 
equals to number of RGB bounding box.  

 
The fusion results are visualized below. There are 2 pedestrians walking within camera 

frame. Since they are too closed to each other, LiDAR clustering node will treat them as a single 
pedestrian as indicated by the red point. However, after fused the detection result from YOLO 
network, the system can accurately detect each of them correctly as shown by the white points. 
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Figure 8. Fusion results.  

7.2.4 Multi-pedestrian Tracking 
 

Our tracking algorithm is based on Hungarian method (to assign pedestrian’s ID in 
consecutive frames) and Kalman filter (to fuse prediction by dynamics and observation from 
LiDAR point cloud). The input to the system are the pedestrians’ detected centroids in Cartesian 
space. The output will be a list of pedestrian with unique id and historical positions.  
 

Within the system, Kalman filter is used to refine pedestrians’ positions using noisy 
sensor data and predict pedestrians’ positions at next time step for data association. Every 
pedestrian will have a dynamics model with constant velocity between each time frame. Every 
time a new observation comes in, it will update the Gaussian distribution for the pedestrian. 
Since detected centroid positions are highly sensitive to pedestrian configuration like orientation 
and waving hands, we also assign a large noise matrix to such observation. By doing so, Kalman 
filter would utilize internal dynamics model to correct the observation noise.  

 
Hungarian method is a combinatorial optimization algorithm that solves assignment 

problem in polynomial time. Specifically, in our system, it is used to achieve data association 
from consecutive frames. We constructed a cost matrix table in which each row associated with 
an existing tracked object and each column associated with a new detected object. The elements 
inside the table are calculated by the Euclidean distance between each pair of the points. After 
that, Hungarian method will how to associate the point pairs in order to reduce the overall 
association cost.  

 
The final tracking results are shown below. Different color indicates different 

pedestrians. As seen from the graph, our algorithm can track the pedestrian reliably with a frame 
rate of 10. 
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Figure 9. Tracking results.  

 
7.2.5 Multi-pedestrian Trajectory Prediction 
 

The problem of trajectory prediction is essentially one of sequence prediction where, 
given a sequence of input coordinates (of a moving pedestrian), we must identify a pattern and 
use that pattern to predict the future sequence of coordinates of the same pedestrian. This 
subsystem forms the crux of our entire system since the output of this subsystem is published to 
the vehicle.  
 

Our polynomial regression algorithm receives an input sequence of locations for each 
pedestrian in the scene. One strength that we have embedded in the system is the complete 
abstraction to the kind of sensors used and the rate at which they are publishing. This allowed us 
to extend the system from LiDAR-only system at 10Hz to a LiDAR-camera fused system at 6Hz. 
Based on a minimum observation window of 3 data points, we fit a polynomial curve to input 
values. Using this curve, we extrapolated for the desired 1.2 seconds and published this as our 
predicted trajectory.  
 

This algorithm also has the advantage that we can adapt parameters to improve the 
results. We played with different degree polynomials and observations lengths. We finally settled 
on a second degree polynomial fit with a maximum observation length of 1.2 seconds. We tested 
this algorithm on live pedestrian data and were satisfied with the results that we were getting. 
The graphs in Figure 10 below show the performance for some specific pedestrian trajectories.  
 

 
a.                                             (b)                                               (c) 
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    (d)                                               (e) 

Figure 10. Graphs of trajectory prediction for trajectories of different radii of curvature (r). 
(a) r = ∞, (b) r = 3m, (c) r = 2m, (d) r = 1m, (e) r = 0m (right angle)  

The algorithm also required minimal addition to extend from single pedestrian trajectory 
prediction to multiple pedestrian trajectory prediction. The Fig. 11 below shows an RViz display 
where the trajectory of three pedestrians is being predicted to a high level of accuracy. 
 

 
Figure 11. RViz screenshot of predicted trajectory for 3 pedestrians 

 
 
7.2.6 Sensing Infrastructure 
 
An integral portion of our project is the mounting and placement of the sensor suite in the 
environment. The initial idea is to have a cluster of a LiDAR and cameras, as described below, 
located at an intersection. We are using a sturdy tripod as the base for the sensor mount since this 
gives us the sturdiness of a fixed infrastructure as well as the mobility to test in any location that 
we need. The tripod also allows for a platform to house the electrical subsystem as described 
now.  
 
The Power Distribution Board (PDB) was designed to power the LIDAR, Jetson TX2, Microsoft 
Lifecam camera from an 11.1V battery. The PDB involves overvoltage, overcurrent, and reverse 
voltage protection. A block diagram representing the current electrical system is shown in figure 
11 below. An Xbee USB module will also be attached to the Jetson TX2 which requires power. 
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Figure 12. Electrical System 

 
The PDB is operational and below are the results for the test conducted on the PDB. 
 

Table 7. PDB Testing 

Device Test Input 
Voltage (V) 

Input Current 
Capacity(A) 

Rated 
Output 

Voltage (V) 

Observed 
Voltage(V) 

VLP-16 
LIDAR 11.1 0.89 11.1 11.09 

Jetson TX2 11.1 0.95 11.1 11.09 

    Camera 11.1 0.3 5 5 
 
 
7.2.7 GPS-based Localization 
 
 In this semester we had to localize an actual car in its environment to predict whether 
there would be a collision between the car and pedestrian. To perform this, we decided to use the 
Reach Emlid GPS which is an RTK module giving high accuracy location information. It 
requires a Base module to be set up as well as a Rover module to ensure high accuracy. This is 
convenient for us since we already have a static infrastructure to place the Base module. The 
system is fairly easy to work with and we were able to receive Serial data from the GPS modules 
with some additional work. The TinyGPS library was invaluable in helping us to parse the 
NMEA format to extract the latitude and longitude information. This was then published to the 
infrastructure from the car as explained in the next section. 
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7.2.8 Communication 
 
The vehicle was equipped with a simple Arduino Mega microcontroller attached to an XBee 
radio and the GPS.  The XBee hooked up to the vehicle was used in broadcast mode on a private 
network at a baud rate of 9600.  Broadcast mode allows the vehicle to connect with any 
infrastructure that can receive its signal.  The XBee radios on the infrastructures use the MAC 
address of the vehicle’s radio to send their information directly to the vehicle.  The information 
communicated consists of only three small string messages: stop, go, 
<latitude,longitude>.  Thus, this small bandwidth network was able to communicate with a 
small baud rate at a large range.   
 
7.3 Spring Validation Experiment (SVE) Performance Evaluation 
 
For the SVE we had five tests which displayed the performance of each important subsystem 
corresponding to the performance requirements as well as the performance of the entire system. 
We were able to pass all performance requirements as stated in Section 3.2. The exact 
performance is recorded in the Table 8. It is important to note that these are repeatable results as 
we were able to achieve similarly positive results in several tests as well as in both the SVE and 
SVE Encore.  
 

Table 8. SVE Test Performance 

SVE Test Quantitative Performance 

Detection Accuracy 0.12m 

Tracking Consistency Continuous tracking 

Pedestrian trajectory prediction 0.2745m 

Cycle Time 0.24s 

Vehicle Collision Avoidance Success Rate 100% 

 
 
 
7.4 Strengths and Weaknesses 
 
7.4.1 Strengths 
 

1. Detection Accuracy: The detection accuracy tested at an average of 0.12m.  This was 
excellent, considering our requirement of less than 0.3m.  We are particularly happy with 
this because we the test cases were difficult with multiple pedestrians standing close to 
each other. 



17 
 

2. Good Cycle time: Time taken between when the first pedestrian is detected to the first 
published trajectory was around 0.29 seconds.  This is a terrific refresh rate for our 
system with the additional and costly image detection and fusion algorithms. 

3. Robustness to Environment: We tested the entire system in heavy rainfall and wind for 
several hours and were still able to achieve adequate results. This is important to a real-
world implementation of our system since the system should work in these conditions as 
well.  

4. Graphical User Interface (GUI): The GUI developed for demonstrating our performance 
requirements showcased our requirements clearly and effectively. 

5. Extensibility: Our software platform has now been designed such that we have the ability 
to work with one or many sensors 

6. Scalability: Our infrastructure is currently self-contained; this means that if we wanted to 
have multiple instances of this infrastructure it would be extremely easy to do so. 

7. Team: We have an excellent team with a wide range of skill sets.  This is a key strength 
that helped us in developing this project in a very short span of time. 

 
7.4.2 Weaknesses 
 

1. Communication: While our Zigbee-based communication system was adequate for our 
requirements, it is not robust enough to extend to several cars as would be typically 
required of the system.  

2. Robustness: The system is good enough to work for multiple pedestrians but it is a 
difficult problem in general to make the system to work for many more pedestrians. 

3. Background Registration: To make the system completely autonomous for long periods 
of time, we would need to develop an automatic system of registering new backgrounds 
to the old one periodically. 

 
7.4.3 Opportunities for improvement 

 
1. The range of the detection algorithm satisfied the requirements that we had defined but 

the performance dipped towards end of the range.  Hence, we intend to solve the issue 
with fusion of camera data. 

2. The trajectory prediction subsystem worked well and was able to recover from erroneous 
predictions very quickly. However, the performance when using the fused data is not as 
good as the performance when using only the LiDAR data. This shows that there is scope 
for improvement in this subsystem. 

3. The speed when using the fusion algorithm is slow causing some lag in the system. This 
is the reason we attempted to keep the cycle time in check but there is still some scope for 
this issue to be solved.  
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8. Project management 
 
8.1 Schedule 
 
 

 
Figure 13. Work breakdown structure 

 
We have followed a deliverable oriented WBS with 4 functional branches - 

infrastructure, perception, vehicle and communication. The last 2 branches apply to all systems - 
integration and management. The green work packages have been completed, the blue work 
packages are in progress, and the red work packages have not been started yet.  At the time of 
this report, the work is completed, thus all items are green.   
 

The table below depicts a simplified version of the schedule for the spring semester, 
which maps directly to the work breakdown structure above. We completed everything that we 
intended to complete for the Spring semester by nearly keeping to the schedule laid out below. It 
was mainly between Progress Review 10-12 that we lagged behind slightly. Luckily we had kept 
a buffer period of a week and hence were able to complete the validation experiments at the end 
of the semester successfully. 
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Table 9. Spring schedule (Yellow = Progress Review, Red = SVE, Blue = Allotted time for task) 

 
 
 

8.2 Budget* 
 
* Full parts list is included in the appendix 
 
The budget of $5000 that was provided to us was substantial. Through judicious use of existing 
MRSD resources and the budget, we were comfortably able to purchase all essential items (and 
some non-essential items). We used two Velodyne VLP-16 LiDARs from existing MRSD 
inventory which allowed us to stay within budget. All our other purchases were made when it 
was an absolute necessity and by searching for the best cost-effective option. Our best purchase 
was the DeWalt Power Hub which allowed us to successfully test our system outdoors for 
extended periods of time. Moreover, this will be a valuable commodity to all teams in coming 
years whenever they need to do outdoor testing. Another very useful purchase was the Reach 
Emlid RTK GPS which allowed us to successfully localize our vehicle using just one sensor and 
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without the additional overhead of fusing multiple sensors. It will also be a very useful purchase 
for the incoming batch. 
 
Starting Budget: $5000 
Budget Left: $600 (12%) 
 

Table 10. Big ticket expenditures from budget 

Item Price 

Zed Camera 450 

Jetson TX2 x 2 640 

Electrical Components 350 

Emlid Reach GPS and antennae 960 

Communication hardware 200 

Tripods 300 

DeWalt Power Hub 500 

Vehicle Costs 250 

Other (Primarily testing) 750 

TOTAL $4400 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 14. Pie chart showing the major expenditures 
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8.3 Risk management 
 
Our risk management over both semesters has been fairly accurate although we have not kept to 
strictly following and updating the list. We usually sat down and tried to predict what might 
affect us adversely in the semester and kept a watchful eye on those risks. Our mitigation 
strategy usually came down to determination and quick thinking to find a solution that would 
work robustly and reliably.  

 
Table 11. List of risks and corresponding mitigation strategies 

Risk 
ID 

Risk 
Definition Type Likelihood 

(1-5) 
Consequence 

(1-5) 
Mitigation 
Strategy 

1 School work 
Overwhelming Schedule 5 4 

Help each other with 
work, get ahead when 

possible 

2 Personnel 
Availability Schedule 2 2 

Share schedules ahead 
of time, plan work 

accordingly 

3 Localization Technical 3 5   Use LiDAR as a 
backup 

4 
Loss of 

Communicatio
n 

Technical 4 2 
Build vehicle trajectory 
prediction to be robust 

to packet loss 

5 Camera LiDAR 
Calibration Technical 5 5 Control the 

Environment 

6 Jetson TX2 
Performance Technical  3 4 Optimizing Algorithms 

7 Weather Non-Technical 5 5 Have a video backup of 
functional  system 

8 

Multiple 
Sensors/ 

Infrastructure 
Integration 

Failure 

Technical 2 4 

Design the system 
where each subsystem 

can function 
independently 
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Figure 15. Likelihood-Consequence Risk Table 

 
9. Conclusions 
 
9.1 Lessons Learned 
 
A team project of this scale brings up several challenges which provides a lot of scope for 
learning. Some of the lessons that we learned are summarized below: 
 
Management: 

● Requirements should drive design, not the state-of-the-art methods 
● Requirements should be defined not based on what is possible but on what the 

stakeholders ask for 
● Division of work should be done based on capability and interest; but it’s important each 

member in the team understands his/her role in the team 
● It is beneficial if each person has a “buddy” so that if the lead on a subsystem is busy or 

unable to perform the work for any reason, there is someone who has a general idea of 
what has been implemented in the subsystem and what work is left 

● Defining intermediate goals (e.g. Progress Review goals) are very helpful in making 
incremental progress without feeling daunted by the work at hand 
 

Software: 
● Version control is important as it provides a safeguard against possible mistakes as well 

as easy access to the codebase 
● Maintaining a uniform package requirement is important as it ensures team members do 

not inadvertently install packages that might conflict with another part of the system 
● Maintain a detailed README file to ensure that the basic requirements of the system are 

listed 
● Record lots of Rosbag files of raw sensor data which will allow unit testing of each 

subsystem 
● Robustness is extremely important for each subsystem; keep testing conditions in mind 

during development and aim to meet it even in the worst-case scenarios, not in the best-
case or average-case scenarios 
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Testing/Validation: 
• Ensure that the list of commands required to start the system is well documented so that 

even a person new to the system will be able to use it 
● Perform testing from a completely unbiased viewpoint, this allows you to realize errors in 

the system rather than sweep them under the rug 
● After testing the system once, it is important to branch your code and work in a “demo-

oriented” manner to ensure that the system has more robustness 
● When performing the validation experiment, it is important that you control the 

environment and the experiment - stick to the script as best you can 
● It is important to achieve repeatability of the system before considering that the system 

has been completed; the aim should be to get the system to a point that it works when you 
switch it on, not on the third or fourth attempt 
 

 
9.2 Future Work 
 

● Structure infrastructure in a client-server architecture instead of performing the 
computation on-board 

● Integrate multiple infrastructures to allow for a better error-catching as well as gathering 
more useful information 

● Switch the communication to a faster and more robust system such as DSRC 
● Optimize the deep learning networks to allow for a faster system since this is critical in 

safety systems 
● There are more sensors that can be useful additions to this system such as infra-red or 

thermal cameras; the system has been built keeping modularity in mind so adding more 
sensors should be considerably easier 

● Make the electronics of the system self-contained and attached to the infrastructures 
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Appendix: Parts List 
 

1 Seville Classics Industrial All-Purpose Utility Cart, NSF Listed 

2 Jiffyloc Heavy Duty Extension Pole, 4 - 8 feet, Made In USA 

3 Jiffyloc Quick Release Adaptor 

4 ZED Stereo Camera 

5 Set of 10 5/32" pins 

6 Jiffyloc angle adaptor 

7 Jiffyloc Heavy Duty Extension Pole, 4 - 8 feet, Made In USA 

8 Jiffyloc Quick Release Adaptor 

9 ZED Stereo Camera 

10 <-(set of ten) 5/32" pins 

11 Jiffyloc angle adaptor 

12 Jiffyloc male thread adaptor 

13 NVIDIA Jetson TX2 Developer Kit 

14 50 ft, 9 gauge wire 

15 range extender 

16 Green toggle laser pointer 

17 Barrel Jack Connector 

18 10.0µF ceramic capacitors 

19 TVS DIODE 

20 TVS DIODE 

21 TVS DIODE 

22 SCHOTTKEY DIODE 

23 TVS DIODE 

24 TVS DIODE 

25 LITTLEFUSE 

26 LITTLEFUSE 

27 LITTLEFUSE 

28 LITTLEFUSE 

29 SIMPLE SWITCHER® Power Converter 150 kHz 3A Step-
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Down Voltage Regulator 

30 INDUCTOR 

31 RESISTOR, American symbol 

32 LED 

33 12V to 5V DC/DC Converter 

34 Multistar 11.1V battery 

35 Colcase LiPo battery explosion proof case 

36 Voltage checker 

37 Barrel jack connectors 

38 DC barrel pigtail connector 

39 Multistar 11.1V battery 

40 Tripod 

41 Mount stock 

42 Xbee pro 

43 Xbee dongle 

44 Xbee shield 

45 REACH RTK KIT 

46 3DR 915 Mhz (US) Telemetry Radio 

47 GNSS Antenna Pack with Cables 

48 Green toggle laser pointer 

49 3DR 915 Mhz (US) Telemetry Radio 

50 Xbee shield 

51 Tripod 

52 Jetson TX2 

53 Keyboard 

54 HDMI Cables 

55 MZ-7KE256BW 

56 CONN ADAPT MCX PLUG TO SMA JACK 

57 STDR2000101 

58 HKPilot transceiver telemetry radio set 
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59 Laser-to-Lidar Nut 

60 LITTLEFUSE 

61 LITTLEFUSE 

62 10.0µF ceramic capacitors 

63 Barrel Jack Connector 

64 XT-60 Male/Female Pair 

65 SMD LED - Green 1206 (strip of 25) 

66 250 Ohm Resistor 

67 750 Ohm Resistor 

68 HDMI to VGA Connector 

69 USb to Mini-USB 

70 
Button Head Hex Drive Screws (Passivated 18-8 Stainless Steel, M3 x 
0.50 mm Thread, 6mm Long)- McMaster Carr 

71 CABLE ASSY STR 2.5MM 6' 24 AWG 

72 Spiral Cable Management 

73 Spiral Zipper Cable Management 

74 Barrel Jack Connector 

75 LITTLEFUSE 
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