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     1. Prefatory Information 
This projects seeks to build a robotic system that can detect emotions from humans at real 

time using verbal, visual and vocal modes of data. At our project deep learning algorithms meet 
robust face tracking hardware to get the best performance. Our work demonstrates the use of 
multimodal fusion techniques in the field of emotion recognition. This final report nails down the 
refined overview of our use case, documents our system design and cyber physical architectures 
various aspects of project management. Additionally, we enumerate the lessons we learnt from 
this project and discuss possible future work on top of this project.  
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2. Project Description  
2.1 Refined Project Details 

This project involves applying machine learning techniques in order to build an AI that 
can detect human emotions through a multitude of data modalities.  
 

We want to focus on the multi-modal aspect of emotion recognition where video data, 
acoustic waveform analysis, and lexical sentiment analysis is used jointly to predict emotions of 
a single human in front of a camera and within “earshot” of a microphone. 
 

What this project is NOT is an attempt to recognize the mode of incoming data and detect 
emotions from that single data mode. On the contrary, all data modalities will be fed to the 
system, just as we humans receive it (through vision, hearing) and the system will need to detect 
emotions by jointly considering all data modalities. 
 

Another thing this project is NOT is an attempt to build an intelligent chat-bot, nor is it a 
speech technology project that aims to convert audio data into text. Though these are pertinent to 
Olly and other emotionally aware personal assistants, they are not related to the title of our 
project and so are out of the scope of this project.  
 
 
2.2 Project Goals 

The goal of this project is to build a high EQ (Emotional Quotient) AI agent that jointly 
uses acoustic, lexical and visual information to predict human emotions.  
 

More specifically, this information will be what we humans use to gauge the emotional 
state of other humans:  

● Visual: Facial expression, pose and orientations (smiles, frowns, eye gaze, head nod) 
● Vocal: Vocal expressions (laughter, groan), Prosody (tones, pace, pitch) 
● Verbal: Natural Language and Semantic Sentiment 

 
We thus aim to prototype and test multimodal deep learning systems that sample this 

Three-V (Visual, Vocal, Verbal) data, and output emotions as close to real time as possible. A 
simplified representation of this is showcased below in fig 2.1: 

 
Figure 2.1: High level representation of our goal 

 
 
The applications of this project are widespread. These include: 
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1. Enhancing social skills of current robot assistants (eg home robots, virtual assistants, etc.) 
2. Perceptive and targeted marketing: The tool could be used to gather the response and 

likability of people towards advertisements and products, and this data can be used for 
better marketing. 

3. Honing social skills for the socially challenged, and coincidentally building a sense of 
understanding (and not repudiation) by the public towards people like this - This use case 
will be explored in greater detail below. 

 
3. Use Case 

Michael, illustrated in Fig 3.1, is a software engineer for a very demanding company and 
also happens to be extremely shy, has approach anxiety and has little to no verbal exchanges 
with others at his office. Despite his mind blocks, he is aware that he has a problem and commits 
himself to solving it.  
 

In order to practice small talk, Michael instinctively decides to buy the Amazon dot as in 
his eyes, a robot will not ostracize or judge a person as socially inept as him. A short while later, 
the dot is delivered and after setting it up, he begins his dialogue. However despite his issues, 
Michael quickly becomes aware of just how sterile the conversations with the dot are. He is 
interviewing the dot, which is returning bland, lifeless answers.  
 

Discontent with this purchase he searches the market for alternatives and finds Olly the 
personal assistant from Emotech. After the order and delivery Michael takes a deep breath and 
flips the switch. An AI agent comes to life, notices him and orients its robot body towards him 
and proactively starts a conversation. Michael is shocked, he has already begun to 
anthropomorphize the robot because of its act of facing him when noticing him, and breaking the 
ice. He responds and the conversation becomes dynamic. Not only that, the robot seems to 
choose its words carefully from reading his externalized emotional queues. This is reflected in 
the proactive suggestions by the robot as well as its responses or lack thereof to Michael’s words. 
The conversation continues, time flies and before he knows it, Michael has had a 30 minute long 
conversation with the robot where he has vented about his problems, opened up and talked about 
his life.  
 

 
Figure 3.1: A depressed Michael with his Olly [1] 
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These interactions occur every day as Michael gets back home from work. He begins to 
feel progressively better about himself day by day as this Olly robot provides a vessel for 
catharsis. Just like a psychologist, Olly listens and guides Michael into appropriate topics from 
his answers. To an outside observer, these interactions seem to indicate a positive trend in the 
right direction for Michael. Only a short while ago he was having trouble finding his words 
during conversations, had little experience conversing with other human beings and was 
completely incapable of building rapport with anyone. He was also depressed by his interactions 
with their concomitant missteps, awkwardness and gaffes. Olly seems to have addressed both of 
those issues: first by being a loyal friend that he can practice having meaningful conversations 
with, and second by therapeutically letting him vent.  

The regular interactions with Olly have allowed Michael to regain his confidence, 
illustrated in Fig 3.2, and has honed his ability to hold a conversation. This has led to gradual 
improvements in the quality of his interactions with his coworkers at the office. He also feels less 
depressed and this is monitored by Olly as it looks for trends in changes to Michael’s overall 
sentiment in each conversation.  
 

 
Figure 3.2: A cheerful Michael with his Olly[2] 

The key driver to the helpfulness of these interactions is Olly’s ability to read Michael, 
and this comes from a strong emotional awareness that was engineering into the robot by our 
team. Though the opportunities are endless for deep emotion awareness engrained in robots, the 
use case presented above focuses on assistance to socially lacking humans. This is not a single 
incidence use case because the benefits only accrue from systematic incidences of conversation 
occurring over days or weeks.  
 

It is also important to focus specifically on the ability for the Olly to read Michael’s 
emotions. That very ability is what this project is all about. Multimodal emotion recognition is 
just a piece of the puzzle, (though a crucial one) that is required to engineer an agent that can 
interact with us at this level. This power of emotion recognition expands the scope of possible 
consequential actions, and so in the context of Olly, this multimodal emotion recognition system 
would be used in conjunction with a natural language model and speech technology system. 
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4. System-level requirements 
The following is the breakdown of our project requirements. These requirements are 

categorized as mandatory (M) or desirable (D), as well as performance(P) and nonfunctional (N). 
 
4.1 Functional requirements 

Our project has two main parts. The first is the ability to detect emotions, the other is the 
ability to track users. The functional requirements of this project will be split up for each of these 
two parts. 
 

Table 4.1. Functional requirements details for emotion detection 
 

ID Title  Description 

M.P1 Shall detect 5 emotions 
from tri-modal data 

The system will detect human emotional with an accuracy of up to 50% 

M.P2 Shall output emotion 
chart 

The system will output a display of the emotion chart at 1 frame per second 

 
Table 4.2. Functional requirements details for ability to track users 

 
M.P3  Shall Track user The camera will track the user during the entire time in 2-DOF (Left -Right 

& Forward -Backward) at a maximum speed of 10 cm/sec along both 
directions 

 
 
 
 
 
 
4.2 Non-functional requirements 

Table 4.3 enlists non-functional requirement details for the robot. We have no non-
functional requirements that relate to emotion recognition, but rather to the face tracking 
hardware. We want to essentially emulate the product of our sponsor Emotech (Olly) which is a 
little robot like the Amazon Dot and thereby the non-functional requirements were chosen.  
 

Table 4.3: Nonfunctional requirements 

ID Title  Description 

D.N1   Rests on tabletop The robot that will serve as the physical casing for our instrument cluster shall 
rest on a tabletop 

D.N2   On/off switch The system shall be standalone and have a switch to activate and deactivate 

D.N3   Under $5000 The budget of developing this system shall be under $5000. 

D.N4 Smaller than a   
microwave 

The size of the robot itself shall be smaller than a microwave.  
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D.N5 Less than 5kg The robot shall weigh less than 5kg, (battery included) 

 

 

5. Functional Architecture 
5.1 Block Diagram 

 
 

Fig 5.1: Block diagram functional architecture 
 
5.2 Description of Functional Architecture 

The desire is to be able to feed 3 different kinds of data streams through separate 
pipelines into our system and have an emotion recognition output, as shown in Fig 5.1. This raw 
data by itself shouldn’t just be fed raw but rather preprocessed so as to better expose the neural 
networks to their interesting features. This phase is known as data preparation. After the data has 
been prepared, feature detection subsystems extract or learn features which present themselves in 
the multimodal emotional data. After the system has detected the features, it learns latent features 
that are shared by the audio and visual data modalities. The learnt common features and focus 
points (that both modalities show are helpful in predicting emotion) are then fed along with 
verbal features into a subsystem that “examines” these features in unison and uses them to 
predict emotion. This emotion is then displayed in way that is digestible to humans. Going back 
to the visual feature detection, since our project involves the ability both to detect emotions and 
track humans, the location of the facial features in the image is used as information to help orient 
the robot towards the human.  

 
6. System Level Trade Studies 
6.1 Joint Representation versus Coordinated Representation: 
Joint representations are projected to the same space using all the modalities as input. 
Coordinated representations on the other hand exist in their own space but are connected to 
each other through a similarity like Euclidean distance or structure constraint. 
Joint Representation:  
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Figure 6.1 gives a visual description of joint representation. It has the following characteristics.  
● Project multimodal data into a single space 
● Best suited for situations when all of the modalities are present during inference 
● Models can be trained end to end both to represent data and to perform a particular task 
● Cannot handle missing data easily although some ways exist to solve this issue 

 
Fig 6.1: Joint Representation[3] 

Coordinated Representation:  
Figure 6.2 shows the coordinate representation. It has the following characteristics.  

● Project each modality into a separate but coordinated space. 
● Also suitable for applications if only one modality is present during test time. 
● Such representations have not been worked out for greater than two spaces yet 

 
Fig 6.2: Coordinate Representation[3] 

 
Conclusion: The reasons for choosing joint representation are owed to 

● Existence of more than two modes (Visual, Verbal & Vocal) 
● Existence of fully labelled multimodal data set 
● Multimodal data at real test time scenarios. 

 
6.2 Early Fusion Versus Late Fusion: 
Multimodal fusion refers to the joining of information from two or more modalities to 
perform a classification of classes. Model agnostic approaches of fusion methods are broadly 
divided into two categories. 
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Fig 6.3:Multimodal Fusion Approaches[3] 

Early Fusion 
● Aggregates the features immediately after they are extracted. 
● Either simply concatenate the vector representations of the modalities 
● themselves or use an encoder to do so. 
● Learns to exploit low level features of each modality 
● Faster training pipeline due to the need of training only one network 

Late Fusion 
● Uses single mode classifiers 
● Fusion at the end using a weighted average or learned distribution scheme. 
● Ignores low level interaction between the modalities. 
● Slower training pipeline due to 3X networks and 3X weight matrices. 
● Can learn or predict when one or more modes are missing. 

Conclusion 
Early fusion was chosen over late fusion because of: 

● Faster training pipeline(due to project time-line constraints). 
● Faster iteration and reiteration due to the above. 
● Availability of all three modes both during training and testing. 
● Ability to exploit low level features of each mode. 
● If well trained, early fusion type architectures are robust to noise, corrupted or missing 

modalities. 
 
6.3 Action Unit Features Versus Dense CNN Features: 
Action Units(AUs) are fundamental actions of individual muscles or group of muscles.Some 
examples of AUs include inner brow raiser, lip tightener and dimpler. In vision only emotion 
recognition literature, action units have shown to be directly useful in predicting emotions.  
On the other hand, we had the option to use Dense CNN features from Resnet or VGGNet which 
we trained on emotion recognition. We followed both approaches, on the dataset we got almost 
similar accuracies and also in the real world. However we were not able to detect the failure 
points of our vision subsystem since the dense CNN features can’t be decoded to what the 
network is learning. Using the dense CNN features meant a faster training and iteration pipeline 
due to an end to end deep learning system rather than pre-computation in the action-unit 
extraction case. However, dense CNN features also had a higher variance among multiple 
experiments. Owing to lower variance and capability to understand the visual subsystem, we 
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decided to extract action unit feature intensities rather than dense features which have been 
detailed in our vision subsystem description.  
 
6.4 Steppers Versus Servos: 
The design of the system has been in a state of flux for quite some time. We were originally 
impressed by the repeatability and precision of stepper motors, but as we came to find out, had to 
grapple with a host of over issues that would curtail the flawlessness of the integration. Stepper 
motors have a bit of a pre-actuated lag which makes their response slightly jittery concerning the 
nature of the input to it, coming in discrete chunks rather than a fluid stream. The steppers were 
also more prone to overshooting the humans because of this lag, and were also prone to making 
weird sounding noise which could corrupt the background noise that is being registered by the 
microphone. Servos on the other hand had the ability to be a lot smoother, without making too 
much noise, they were also a lot more sturdy than we already thought and were fully capable of 
moving the Lukabot around. Unlike Steppers, they also did not require a motor driver, and 
increased the simplicity of our setup.  
 
7. Cyber-Physical Architecture 
7.1 Block Diagram 

 
Figure 7.1: Block diagram cyber physical architecture 

 
7.2 Description of cyber-physical architecture 
Fig 6.1 illustrates the cyber-physical architecture of the system. 

An RGB camera will be used to capture the raw video feed of the person who is 
speaking. This will be passed to the face detection program which will crop the face for each 
frame and this will serve as the visual input for the neural network. For the vocal modality, a 
microphone will be used to capture the raw waveform. This waveform will be sampled at a 
desired sampling rate frequency. During this conversion raw vectors will be extracted which will 
act as vocal input to the neural network. A pre-decided script will be used as raw input for the 
text modality. Each word will be converted to vectors to get word embeddings. These word 
embeddings will act as verbal input to the neural network.  
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After this there is an encoder for each modality. For the vision modality we are extract 
Action Units for each frame along with a bidirectional LSTM along the temporal dimension. For 
the vocal modality we extract acoustic features every 10 ms and again use a bidirectional LSTM. 
The extracted features from the verbal and visual modalities are fed into the dual attention 
network which will learn similarities and focus points between the two modes. The dual attention 
network gives as an output a shared vector which captures information between both the 
modalities. This is called a memory vector. This memory vector along with the extracted features 
from the vision modality is passed on to the shared decoder for final prediction of emotion.  
 
 
8. System Description and Evaluation 
An overview of the system is shown in Fig 8.1.  

 
Fig 8.1 : Description of the Integrated System 

 
There is a main thread which launches webcam, audio recorder, the vision + vocal network and 
the text input. The webcam keeps recording and showing frames to the live GUI. It pushes all the 
frames to a variable shared across the vision and vocal network. The audio recorder does a 
similar thing. It records audio and pushes it to a shared array of audio waves. Both these 
variables are accessed and processed by the vision and vocal network. The text input is taken 
from a script. This is passed to the text network which pushes its probabilities. The same is the 
case for the vision + vocal network. These probabilities are accessed by using a shared variable 
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again in another function. This is again done in parallel since both the encoders calculate at 
different rates. The shared probabilities function weighs shared probabilities and outputs 
emotions. The final emotions along with their probabilities, the recorded frames and transcript 
are sent to the UI. In the coming sections we discuss all of the subsections in detail.  
 
8.2 Subsystem descriptions 
8.2.1 Vision Subsystem  
 The underlying goal of the subsystem is to extract important visual features from raw 
video feed. Fig 8.2 shows the pipeline for achieving the same.  

 
Fig 8.2 : Overview of the Vision Subsystem Pipeline 

 
The preprocessing steps include dataset shuffling and image normalization for each video frame 
in the dataset. Faces are cropped from all of the images gathered in the above step using DLIB 
OpenCV. The vision encoder is divided into 2 parts, a spatial encoder and a temporal encoder for 
learning representations across space and time respectively. Action Unit intensities are then 
extracted from batches of these images using the spatial encoder. We leverage the CMU 
OpenFace repository[4] for developing our spatial encoder. In vision-only emotional recognition 
literature action units have been found to be very critical in recognizing emotions. Action 
Units(AUs) are fundamental actions of individual muscles or group of muscles. Fig 8.3 touches 
upon some of the key action units used in emotion recognition. 

 



11 

 
Fig 8.3 : Action Units and their visual meaning[5] 

The spatial encoder gives us the intensities of all the action units. A snipped of the same is 
shown in Fig 8.4. 

 
Fig 8.4 : Action Unit Intensity Output of the Spatial Encoder(right) for an example frame(left)[4]  

 
Fig 8.5 draws a relation between the action units and emotion. However we don’t use these 
action units to predict emotion directly but rather feed these features to the temporal Encoder 
first. The Encoder is a Bi-directional LSTM with 256 hidden layers which extracts temporal 
information over 3 second sequences. These spatio-temporal features obtained from both the 
encoders are fed into the dual attention network after combining with the various features from 
the audio modality described in the next section.  
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Fig 8.5 : Action Units and their relation to emotions[6] 

 
8.2.2 Vocal Subsystem 
 The goal of this subsystem is to extract important vocal features from raw waveform. Fig 
8.6 shows a raw audio waveform from which features have to extracted.  

  
Fig 8.6: Raw Audio Waveform  

Fig 8.7 gives an overview of the vocal subsystem pipeline.  

 
Fig 8.7 : Vocal subsystem pipeline overview 

 
After recording the audio waveform, we resample it to 16Khz and normalize it to get a list of 
vectors across time. In the feature extraction section  for each utterance audio, a set of acoustic 
features are extracted using COVAREP acoustic analysis framework[7], including 12 MFCCs, 
pitch tracking and Voiced/UnVoiced segmenting features (using the additive noise robust 
Summation of Residual Harmonics (SRH) method), glottal source parameters (estimated by 
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glottal inverse filtering based on GCI synchronous IAIF, peak slope parameters , maxima 
dispersion quotients (MDQ) , and estimations of the Rd shape parameter of the Liljencrants-Fant 
(LF) glottal model . These extracted features capture different characteristics of human voice and 
have been shown to be related to emotions. Fig 8.8 shows the relative importance of top 10 
features in predicting emotions. The resultant output is a 2D feature map with rows along time 
and each column representing a different feature value. A bidirectional LSTM Encoder is then 
used across time on this 2D Feature map. The representation output from the LSTM is fed into 
the Dual Attention Network along with the visual modality as discussed earlier.  

 
Fig 8.8: Top 10 audio features[7] 

 
8.2.3 Verbal Subsystem  
 The aim of this subsystem is to extract important learned features from raw text/transcript 
data. Fig 8.9 shows the pipeline for the verbal subsystem.  
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Fig 8.9: Overview of the verbal subsystem[8] 

 
In the preprocessing stage the transcript is divided into words and each word is converted to its 
word embedding. These are then passed to the bidirectional LSTM with 1024 hidden cells with 
512 along each direction. The attention mechanism lets the model decide the importance of each 
word for the prediction task by weighing them when constructing the representation of the text. 
For instance, consider the sentence “The weather is so nice today” then a word such as ‘nice’ is 
likely to be very informative of the emotional meaning of a text and it should thus be treated 
accordingly. The attention model should give less weightage to words like “today” or “weather”.  
On a low level, the attention model for the text modality is a simple weight matrix over all the 
words. The importance of each word in a sample is learnt during the training phase. Lastly, the 
representation vector for the text is found by a weighted summation over all the time steps using 
the attention importance scores as weights. This representation vector obtained from the attention 
layer is used as input to the final softmax layer for classification. As is shown in the above figure 
there are also skip connections between the Bi-LSTM and the attention as well as between the 
embeddings and the attention. The original authors of the paper argue that these skip connections 
were useful for transfer learning on the text modality.  
 
8.2.4 Attention Model 
 The goal of the attention model is to learn similarities between the vocal and the visual 
modalities as well as focus points between them. This helps the overall model to learn emotions 
better and faster  by connecting representation of different modalities together.  For our project 
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we employ a dual attention network. Dual Attention Networks (DANs) which jointly leverage 
visual and textual attention mechanisms to capture fine-grained interplay between vision and 
audio modalities. DANs attend to specific regions in images and waveforms through multiple 
steps and gather essential information from both modalities. Based on this framework, we work 
with r-DAN or reasoning DAN. The reasoning model allows visual and audio attentions to steer 
each other during collaborative inference, which has been shown to be useful for tasks such as 
Visual Question Answering (VQA). We have found that r-DANs are also helpful in emotion 
recognition task giving us a higher performance over a single human rater on the CREMA-D 
dataset. Fig 8.10 shows a high level overview of the attention model.  

 
Fig 8.10:Reasoning Dual Attention Network[9] 

On a low level the attention model, shown in fig 8.10, is a simple feedforward neural 
network which takes in feature vectors from the vocal and the verbal encoders as well as a 
concatenated representation of a “memory” vector (denoted by m vector in the figure) which 
tries to lump all of the information learned by the attention model in the previous step. The above 
figure is a two-step or a dual attention network. The feedforward neural network is repeated two 
times as shown by two bounding boxes. The dual attention is connected with a fully connected 
layer to give the final audio-visual predictions. These softmax probabilities are later combined 
with the text probabilities to give the final emotional output.  
 
8.2.5 UI 

The goal of this subsystem is to show the performance of the system while also showing 
the corresponding video recording and the text transcript spoken. Fig 8.11 shows a snapshot of 
our user interface subsystem. 
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Fig 8.11: Results of the integrated network 

 
The UI outputs probabilities of each emotion for the audio-visual and the text network as well as 
shown in Fig 8.12 

 

 
 

Fig 8.12: Results of the audio-visual and text predictions 
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8.2.6 Robot Hardware 
 The goal of this subsystem is to track the face of a human as they move about within the 
field of view of the camera of the robot. Interactions rarely feature completely static human 
motion, and so it is of the utmost importance that the visual data pipeline hardware (the camera) 
is able to pan from side to side as the human walks and leans from side to side, and also tilt 
upwards and downwards as the human stands up, sits down, leans in, recedes away from the 
robot. A static camera would lose such a person in a truly natural interaction. This system works 
by detecting the center of a face and relaying the pixel coordinates to the computer so that 
instructions can be sent to Servos so that they rotate until the face is centered in the image. An 
Arduino is the intermediate micro-controlling agent that acts between the face coordinate 
detection of the PC, and the actuation of the Servos. This a small robot with a height of 32cm 
from base of the stepper to the top of the webcam. The assembled robot is shown in Fig 8.13 

 
Fig 8.13: Assembled LukaBot 
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8.3 Modeling, Analysis and Testing 
8.3.1 CAD Modeling of Face Tracker 

 
Figure 8.14 shows the CAD Model of the 2-DOF LukaBot.  

8.3.2 Experimental Results 
Table 8.1 benchmarks our average results on real tests conducted before, during and after the 
SVE and SVE encore. The reported results were measured using 3 human raters (our team) as 
ground truth across 5 emotions. These 5 emotions are content, happiness, sadness, anger and 
neutral.  

Table 8.1: Results on real tests  

Modality Accuracy(across 5 emotions) 

Audio + Vision 55% 

Text 59% 

Audio+Vision+Text 71% 

 
Table 8.2 shows our results on the CREMA-D dataset against 6 emotions. These emotions are 
happiness, anger, fear, disgust, sadness and neutrality. The model with the highest accuracy (at 
the bottom of the table) was chosen as our final model. We can see that OpenFace features also 
slightly outperform dense CNN features as argued in our trade studies section. We also beat the 
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human-level performance on this dataset. We also show the jump in performance upon 
combining modalities clearly.  
 
 

Table 8.2: Results on CREMA-D datasets across 6 emotions 

Model Mode Acc. 

Human performance Audio 40.9% 

COVAREP Features + LSTM Decoder Audio 41.5% 

OpenFace Features + LSTM Decoder Vision 52.5% 

Resnet-18 + LSTM Decoder Vision 54.8% 

Resnet-18 + (COVAREP Features + LSTM) +Gated Attention V+A 58.0% 

Human performance Vision 58.2% 

Human performance V+A 63.6% 

Resnet-18 + (COVAREP Features + LSTM)  +Dual Attention V+A 63.6% 

(OpenFace features + LSTM) +  (COVAREP Features + LSTM) +Dual 
Attention 

V+A 65.0% 

 
We use the best audio, vision and audio-vision models to run more experiments on a different 
dataset. The RAVDESS dataset has 8 different emotions (neutral, content, happy, sad, angry, 
fearful, disgust, surprised)  and two different types of recordings, one being normal speech and 
other being singing. The results for both the types are shown in table 8.3 and 8.4 respectively.  
 

Table 8.3: Results on RAVDESS dataset for normal speech(across 8 emotions) 

Model Mode Acc. 

COVAREP Features + LSTM Decoder Audio 41.25% 

OpenFace Features + LSTM Decoder Vision 52.08% 

(OpenFace features + LSTM) +  (COVAREP Features + LSTM) +Dual 
Attention 

V+A 58.33% 

For the singing recording there are only 6 emotions (neutral, content, happy, sad, angry, fearful). 
Although the model trained on singing recordings are not used, it was useful to see the transfer of 
learning from normal speech to singing. It is evident in the results that since singing audio differs 
a lot from normal speech audio our accuracies are almost close to random. The Dual modality 
accuracies also fall down to single modality accuracy levels. We conclude that the dual attention 
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is very robust to corruption of modalities (speech to singing) and would behave almost like a 
single modality despite it being a early fusion type of architecture. This has been one of the 
reasons for choosing early fusion in our trade studies before. 
 

 
Table 8.4: Results on RAVDESS dataset for singing (across 6 emotions) 

Model Mode Acc. 

COVAREP Features + LSTM Decoder(pretrained on speech recordings 
only) 

Audio 21.59
% 

OpenFace Features + LSTM Decoder(pretrained on speech recordings only) Vision 50.56
% 

(OpenFace features + LSTM) +  (COVAREP Features + LSTM) +Dual 
Attention(pretrained on speech recordings only) 

V+A 51.13
% 

(OpenFace features + LSTM) +  (COVAREP Features + LSTM) +Dual 
Attention(with fine tuning on song recordings ) 

V+A 67.61
% 

 
 
8.4 SVE Requirements 
8.4.1 Emotion detection accuracy of 50% across 5 emotions  
All the various real-life emotions were compartmentalized into 5 distinct emotion 
neighborhoods/buckets for identification as shown in the above figure. 

 
Fig 8.14: Valence-Arousal Emotion Chart[10] 

 The first bucket is happy/elated/excited shown in the top right quadrant. The second 
neighbourhood is sad/depressed/gloomy given by the bottom left quadrant. The third cluster is 
hate/alarmed/fear/anger in the top left quadrant. The fourth one is calm/content/relaxed in the 
bottom right quadrant and the last one is neutral in the center. The requirement was that the 
neural network should perform at an average accuracy of 50% on real life tests. 
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8.4.2 Emotion detection rate of 1 frame per second.  
 The emotion recognition system should output an emotion for each frame in the test 
video at an average of 1 frame per second. 
 
8.4.3 Track user in real-time. 

While enacting emotions, the user is free to maneuver around the room at a pace of 10 
cm/sec both forward and backward as well as left and right. Lukabot should be able to track the 
user throughout the demo. Successful tracking is defined as the ability of the bot to keep the 
human inside the frame at all times.   
 
8.5 Spring Validation Experiment Evaluation  

The goal of experiment was to test the performance of Lukabot on recognizing emotions 
in real-time. The user is free to move from left to right at 10 cm/sec and forward and backward at 
10 cm/sec. The success criterion included a processing performance of 1 frame per second and 
an average accuracy of 50% across 5 emotions. These 5 emotions were content, happy, anger, 
sadness and neutral. For the SVE we achieved an accuracy of 59% and on the day of the SVE 
Encore we achieved an accuracy of 71%. The jump in the accuracy is partly attributed to training 
on another dataset as well as no audio responses from the Lukabot interfering with the actor’s 
audio adhering to feedback received during the SVE. The system was also able to track the user 
at all times.  

 
8.6 Strengths and Weaknesses  

 
8.6.1 Strengths  
● Processing Performance:  

The speed of the network at which it predicts is around 30 fps which is faster than 99% of 
movie recordings/ mobile recordings which are recorded at ~ 24 fps. This means that the 
system has the ability to output emotions in real time without lag.   

● Tracking Performance:  
We are able to achieve successful tracking 100% of the time at speeds of 10 cm/sec left 
to right and 10 cm/sec forward and backward. We also feel that the tracking is very 
smooth and exactly what we envisioned while designing this subsystem.   

● Overall Emotion Prediction: 
We were able to achieve reasonable overall prediction for the emotion recognition 
subtask. We are able to achieve real world accuracies of around 60-75% depending on 
the nature of acting by the human. The system is also able to recognize all emotions with 
high confidence when they are clearly not subtle.   

● Satisfactory confusion matrix:   
Whenever the integrated system is wrong, it mostly confuses between content and happy 
or sadness and neutral etc. It very rarely confuses between two emotions of opposite 
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connotations like happy and anger or content and sadness. To quantify this observation, 
we use another metric called the top-n accuracy. This implies that we consider the 
classification as correct if the probability of the correct class lies among the top-n sorted 
probabilities. All our earlier results report the top-1 accuracy. Therefore, although our 
accuracy is around 70%, our top-2 accuracy hovers around in the 85-90% range.  
 

8.6.2 Weaknesses 
● Separation of audio-vision and text modalities: 

The high-level audio and visual modality features were fused using the dual attention 
network. Through our experiments and ablation studies we have seen that by doing this 
we achieve more robustness even when one of the modalities is corrupted to a certain 
extent (like blurry face, mismatched audio recording etc). This is because the Dual 
Attention is trained to attend to important features across the audio-visual space. 
Therefore our accuracy levels fall back to single modality levels in such scenarios. 
However for integrating the audio-vision and text modalities we use a simple averaging 
of softmax predictions.  When the audio-vision or the text modality is corrupted this 
sometimes can give a lower accuracy than individual modalities combined. This can be 
fixed by using a triple attention or other fusion methods across all three modalities. 
However in the interest of time, this avenue was not pursued.  

● Short Contextual Information: 
Our current system predicts emotions for every 3 second chunk of audio-visual and text 
modality. For each segment, it does a totally new prediction and doesn’t take into account 
the emotions in the previous segments. It only considers the time - information within 
those 3 seconds to give a prediction. This worked fine for the demo where the system 
must be demonstrated for a short period of time, but in real life emotions are more 
invariant to change every 3 seconds. Therefore a system which takes longer contextual 
information into consideration would perhaps be more useful.  

 

9. Project Management  
9.1 Work Breakdown Structure 
 

 
Fig 9.1: Three-level Work Breakdown Structure 
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As shown in the figure 9.1, we have 4 work packages on the software end one corresponding to 
each of the modes and one for the trimodal system. We have one associated to the robot 
hardware, one for UI/UX, one for testing/training, and two for project management and 
documentation.  
 
Figure 9.2 (below) shows the work pages in a more detailed manner annotated by semesters 
they’re scheduled to be finished in. Here is how you read this figure: At the bottom right, there is 
a key that explains the meaning of the colors red, green and yellow. These colors appear 
everywhere else in the figure as thin left sided borders to each cell. The actual color code of each 
work package (purple, orange, blue, pink, gray etc) that fills up the cells is completely irrelevant 
and is only there to give each work package its own separate color. Within each work package, 
there are darker or lighter shaded cells, the darker ones are only heading cells, with uncolored 
ones being second order work breakdown of those heading cells. 

 
Fig 9.2: Work packages 

 
9.2 Schedule 
 
9.2.1 Weekly Schedule 
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Fig 9.3 Gantt Chart 

Weekly schedule of activities have been documented and were tracked in Fig 9.3. 
 
 
9.3.2 Spring Validation Experiment 
 
Emotion Recognition System 
Location: Newell-Simon Hall, B floor 
Test Conditions 
● Indoor room with lighting conditions from 4000 lux to 5000 lux  
● Subject acts out a pre-decided script in English from a distance of 15-30 cm in front of 

the camera.    
● Single active subject, face may move at pace of   

○ 10 cm/sec (Left - Right)   
○ 10 cm/sec (Forward - Backward) 

Expected Result: System will detect emotion with following performance metrics 
● Speed: 1 frame/s 
● Accuracy: 50% across 5 emotions 
● Tracking: Keep face within the frame during the test at all times.  

  
 
 
9.4 Budget 
 
9.4.1 Refined Parts List 

Table 9.1: Refined parts list and costs incurred 

Sl. 
No. Part Name Purpose Quantity Part Specification Unit Price Total Price 
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1. Microphones Audio recording 2 Pyle Pro USB  $28.99 $57.98 

2. Servo Motors 
Actuator for face 

tracking 5 
Micro Servo - High Powered, 

High Torque Metal Gear $11.95 $59.75 

3. Camera Visual input 2 Webcam 720P HD $19.99 $39.98 

4. 
Contingency 

camera 
With attached 
microphone 2 Ausdom Full HD 1080p r $22.99 $45.98 

5. 
Contingency servo 

motors Higher torque 2 HS-805MG Servo $59.99 $119.98 

6. Mounting hubs 
Hardware 
Assembly 4 Universal Mounting Hub 5mm $7.49 $29.96 

7. Screws 
Hardware 
Assembly 1 Screws 2-56 $12.60 $12.60 

8. Nuts 
Hardware 
Assembly 1 2-56 Nuts $8.00 $8.00 

9. 
Contingency 

screws  
Hardware 
Assembly 1 

Steel Pan Head Machine Screw, 
(Pack of 100) $6.17 $6.17 

10. Contingency Nuts 
Hardware 
Assembly 1 

Hillman 140009 Zinc Hex, 4-40, 
100-Pack $4.25 $4.25 

11.  Hard drive Data storage 1 WD 6TB Elements  $189.99 $189.99 

12. LEDs PCB 40 LED Vf: 2.2V $1.22 $48.80 

13. Zener diode 
Reverse voltage 

protection 40 Zener Diode- 18V $0.24 $9.60 

14. Schottky Diode 
Reverse current 

protection 40 Schottky Diode-2.5A $0.47 $18.80 
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15. Laptop mouse Infrastructure 2 WiRed USB Optical Mouse  $5.44 $10.88 

- - - - - Total $661.84 

16. Older parts 
Stepper motors, 

kinects - Scratched under revised plan - $706.48 

. 
Shipping and 

Handling - - - - $10.0 

     Total $1,368.32 

 
9.4.2 Budget Summary 

 
Fig 9.4 Budget status 

 
At the start of the project, we were given $5000 to spend. Due to the extreme lack of 

actual hardware in this project, we were a lot more adventurous with the items we obtained, and 
more inclined on purchasing items to empirically validate them as opposed to waiting too long 
doing theoretical validations. We have purchased items that were not directly associated with the 
actual Lukabot such as additional hard drives for the workhorse computer in the MRSD lab so 
that we could store the great big quantity of data that we would need to train our algorithms on. 
We also purchased a large quantity of contingency parts in case some broke down, and so 
ordered things like Steppers, Servos, Arduinos in a large Bulk which of course largely 
contributed to the final budget. We also order items that we ended up not using such as Microsoft 
Kinect Cameras (with contingent ones) as well as oversized Steppers.  
 
9.5 Risk management 
 
9.5.1 Risk Identification 
We have identified the following major risks and have tracked them closely: 

1. Lack of diversity in datasets 



27 

2. Delay due to high training time 
3. Hardware breakdown 
4. Low accuracy 

We have then modelled the impact-likelihood ratings of these risks as follows: 

 
Fig 9.5: Risk impact vs likelihood table for major risks 

 

 
9.5.2 Risk Mitigation 

 
Fig 9.6: Risk card for Risk ID 1 
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Fig 9.7: Risk card for Risk ID 2 

 
Fig 9.8 Risk card for Risk ID 3 

 
Fig 9.9 Risk card for Risk ID 4 

Risk mitigation cards for the four major identified risks have been given in figures 9.6, 9.7, 9.8 
and 9.9. 
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10. Conclusions 
 
10.1 Key lessons learned 
 
10.1.1 Training on multiple datasets is vital  

Since the final product has to perform on real world conditions it was critical to train the 
network on as many datasets as possible so as to remove the bias of one or two datasets on the 
final model. Our encoders were pre-trained on 5 datasets and the attention model along with the 
end to end network were trained on 2 datasets.  We found that our encoders were pretty reliable 
and the attention model worked very well as detailed in the experiments section.  
 
10.1.2 Data preprocessing is the most time consuming task 

Every dataset has its own surprises and is rarely ever plug and play a preprocessing 
pipeline. For instance there are frames in which the face of the user goes outside the frame while 
laughing or while being excited. The number of raters for each video is different, some of the 
raters stopped rating after half of the video, the audio waveform is recorded at a different 
frequency than what is required by us and so on. It is not possible to write a script without 
knowing how each dataset is structured. In some worst cases, it can be identified and weeded out 
by close manual examination only.  
 
10.1.3 Robustness of textual predictions  
 Textual predictions are not susceptible to acting, quality of recordings, lighting 
conditions, facial orientation or other biases not observed in the dataset. This makes the text 
modality robust to variance among experiments with the same transcript. It doesn’t change its 
performance by a large factor from dataset to real world conditions as compared to other 
modalities.  
 
10.1.4 Considering using servos instead of steppers 

We originally started the project by using Steppers however their slow response rate and 
the somewhat jittery, stochastic tracking they have provided has pushed us to use Servos instead. 
Servos offer a quicker response rate, a smoother, more rapid ability to turn and a simpler method 
of programming. Servos can also be directly power by the Arduino which means that we can 
stop using a Rechargeable Turnigy LIPO battery to power the motors. This is a bonus for our 
Risk Mitigation Strategy as the success of our SVE was be less dependent on batteries working 
well, meaning that there were less connections that run the risk of shorting. 
 
10.2 Future Work 
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10.2.1 Early fusion of all three modalities 
The audio and visual modalities were fused early using the dual attention model. 

However, the text modality was fused at the end with the audio-visual modality. Using a triple 
attention to fuse all the three modalities together would lead to more robustness in predictions 
when one or more modalities are corrupted.    
 
10.2.2 Longer Contextual Information 

Currently, we only take the last 3 seconds of temporal information to predict emotions. In 
the future, predictions should take in longer time intervals into consideration as well. A moving 
average would simply smoothen out the predictions but rather a model which learns the causal 
nature of the time space is important to be learnt.  
 
10.2.3 Emotional predictions as a prior for personality predictions 

Emotional responses of a person over a period of time can be used to predict the 
personality of people and vice versa too. For instance, optimistic people are happier on an 
average than pessimistic humans. Some people emote subtly while others not so much. 
Personality and emotions go hand in hand. Therefore there should be a joint model which learns 
the personality of the person as well as his emotions together. This is commonly referred to as 
multi-task learning and has been shown to be very successful when the tasks are similar. The 
idea behind multi-task learning is that it usually gives better predictions on both the tasks 
individually rather than having separate models for each task given that the tasks are similar.   
 
10.2.4 Prediction of micro-emotions  

There are many more emotions other than the 5 major ones which we have identified in 
our project. Due to lack of datasets which have emotions labelled with a high granularity (>=10-
15), prediction of micro-emotions was out of the scope. But in the future, if such a dataset can be 
made or acquired then the network would predict emotions on a finer level. On other machine 
learning tasks, it’s been shown that increasing the granularity leads to better predictions even on 
the same dataset. For instance, if we had only 3 classes; positive, negative and neutral instead of 
5 classes; happiness , content, sad, anger and neutral, then our predictions would be worse off for 
the former 3 class problem than if we lumped the 5 classes after the predictions into 
positive(happy and content), negative(sad and anger) and neutral.  The only difference is that in 
the former case, the network directly predicts 3 classes while in the latter case, we predict 5 
classes but later lump them manually to compare against the 3 class predictions. This has been 
shown to be true in many areas of deep learning and therefore is a viable future alternative.   
 
 
10.2.5 Using emotional predictions to improve machine responses 
 Emotional intelligence guides a lot of human-human interaction, but is completely absent 
from the human-robot/ human-computer interaction arena. Ultimately, in order to give a human 
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flair to machine responses we need to solve the ability to not only perceive nuances in language 
but also perceive the subtle emotional cues from facial expressions, tone of voice, and 
sentimental semantic meaning of the words we use. The perception of these cues is what we 
humans use when conversing with one another in order to build rapport or build comfort. Our 
own emotions as well as the reading of the emotions of others guides the response avenues we go 
down, and using this with machines will help avoid undignified social gaffes on the part of the 
machine such as giving suggestions or advice that clashes with the mood of the conversation. 
Just having a chatbot that can hold a conversation may not provide that cathartic experience that 
comes about from a good talk. In order to vent, or have a conversation that uplifts your spirit or 
makes you melancholic, an agent needs to monitor how the nature of the non-verbal interaction 
changes as the verbal conversation happens.  
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