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MOTIVATION RESULTS
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CONCLUSIONS N Ay

To detect environmental obstacles the rovers build a point
cloud of their environments using the Intel Realsense D435
depth camera. From the point cloud surface normals are
estimated and used to detect high slope features in the terrain.
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e Simple control strategies free rovers from many & avoided by the path planner.
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e Highly robust hardware is required.
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e Accurate relative localization is required for docking. { W, n HHM ‘ﬂ UL |
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