Multi-Agent Collaboration for navigation in disaster zone

Team F: Falcon Eye
{Yuchi, Danendra, Rahul, Pratibha, Pulkit}

MOTIVATION
- Human and Robots working in Collaboration for Disaster Response
- Enhance the exploration and navigation capabilities of ground robots in unknown environments by integrating aerial information from drones

USE CASE
- Human and Robotic collaboration for disaster response
- Enhance exploration and navigation capabilities of ground robots in unknown environments by integrating aerial information from drones

TEAM

SUBSYSTEM TESTING RESULTS

TEAM

SYSTEM DESIGN

PROJECT DESCRIPTION
- Path finding and localization using ground-level sensors is a difficult task when obstacles and dead ends are obstructed from the sensor's field of view.
- Leads to unacceptable performance in time-critical missions in unknown environments - such as disaster relief.
- Augment the localization and path planning capabilities of AGV’s by integrating aerial sensor data from UAV’s.

HARDWARE
- Zotac Mini-PC
- IMU 9DOF Razor
- GPS-SE 100
- Velodyne Puck Lidar
- Internal IMU
- Camera with Fisheye Lens
- Internal GPU

PROJECT DESCRIPTION
- Path finding and localization using ground-level sensors is a difficult task when obstacles and dead ends are obstructed from the sensor's field of view.
- Leads to unacceptable performance in time-critical missions in unknown environments - such as disaster relief.
- Augment the localization and path planning capabilities of AGV’s by integrating aerial sensor data from UAV’s.

SYSTEM DESIGN
- Path Planning with Obstacle Avoidance (Dynamic and Static)
 - Velodyne Raw Point Cloud
 - Reduced Point Cloud
 - GPS Variance