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1 Introduction 
1.1 Goal 
 
We aim to use the PR2 robot in the search-based-planning laboratory to help with unpacking groceries 
from a grocery bag. The setup involves having a table in front of the PR2 robot with a grocery bag on 
one side of the PR2 and a fridge on the other side. Our proposed activity involves identifying object 
inside the grocery bag, picking an object with one arm from the bag, transferring the object to the other 
hand and finally placing the object in the fridge.  
 
1.2 Motivation 
 
Human use two hands to perform many tasks, including open the can, pass the objects or lift the heavy 
stuff. Without a second hand, it’s difficult for human to perform such tasks. To perform similar tasks on 
the robots, it’s important to teach robots to use both hands smoothly. This increases the variety of tasks 
that robots can perform as well as increase the performance of the robot.  
 
1.3 Hardware Platform 
 
The PR2 has two 7-DOF arms, a mobile base and a spine for height adjustment. It also has 2 parallel-jaw 
type end-effectors which can be used to grasp objects. The robot has two embedded computers onboard 
which are equipped with ROS Groovy. The robot also has a Microsoft Kinect which is attached 
externally to enable better perception. It also has a couple of 2D LiDARs and forearm cameras which we 
will not be using.  
 
1.4 Challenges 
 
There are several challenges in performing the entire task due to the large number of modules that need 
to be working together. The toughest challenge is that of regrasping. This is because it requires feedback 
to compensate for possible errors in the initial motion planning as well as ensuring that we choose a 
grasp that can perform the place task easily. This requires online correction of offline grasps which could 
prove very complicated.  
 
The other challenge which is typical of a system is the integration of the different modules. The state 
machine described in the next section needs to function correctly to ensure that the different modules 
work well together. 
 
 



2 System Architecture 
 

 
Fig. 1. Functional Architecture 

2.1 Vision 
 
Purpose: 

● Provide object’s pose (position + orientation) to facilitate arm planning. 
● Identify scene for collision checking and high-level decision making. 

 
Description: 
Vision module will receive RGB image data and extract pre-stored AprilTag information to output the 
location and orientation of the object. It will also use the AprilTag information to determine the location 
of the scene object including table and refrigerator. 
 
Code: Integrating different ROS packages and defining custom messages  
 
2.2 Arm Planning 
 
Purpose: 

● Planning a collision-free trajectory to move the arm to desired location. 
  
Description: 
Arm planning module takes the desired pose (position and orientation) of the end effector and output the 
trajectory, which includes the desired joints’ values and velocities at different timestamp. 
  
Code: Planner and all other environment functions will be written and integrated using MoveIt! 
framework. 
 
2.3 Grasp and Regrasp Planning 
 
Purpose: 

● Provide a collision-free and stable single grasp configuration to grasp a single object 
● Provide a collision-free and stable dual grasp configuration to exchange an object between two 

hands 
Description: 
Grasping module will generate a set of valid grasps for each possible object offline. During single arm 
grasping, module will receive input including type of object and environment constraint (on ground or 
not) and output desired pre-grasp and final-grasp poses (position and orientation) relative to the object. 
During dual arm grasping, module will receive input including type of object and environment constraint 
in order to output desired pre-grasp and final-grasp poses (position and orientation) of the free arm. 



 
Code: Using OpenRAVE for generating valid grasps inspired by first homework assignment. 
 
2.4 Hardware Interface 
 
Purpose: 

● Execute planned trajectory and grasping on physical robot. 
 
Description: 
During planning, hardware interface will receive a trajectory includes the desired joint configurations at 
different timestamp. The interface will use low-level API to control the robot along the trajectory. 
During grasping, hardware interface will receive a pre-grasp pose and final-grasp pose. The interface 
will use low-level API to move the end-effector to final grasp position and close the finger. After all 
executions finished, the interface will also notify the high-level module to proceed to next step. 
 
Code: C++ ROS node written from scratch 
 

 
Fig. 2. State Transition Diagram 

2.5 State Machine 
The above figure shows the state machine that we will be implementing to step through the entire system 
process. It starts with the vision system (labelled as ‘a’) which detects an object using raw data from a 
Kinect. It then sends the object pose to the grasping module which identifies the best valid grasp and 
publishes this value to the arm planner. The planner identifies a trajectory of waypoints and passes this 
to the hardware interface which enables the robot to execute the movement. Then the arm planner plans 
to a predefined location to transfer the object to the other arm. The vision system helps identify the 
object pose for the other arm to regrasp the object. After the transfer is complete, the arm plans to the 
destination and places the object either on the table or in a fridge. There is also a higher-level decision 
that decides the destination of the object.  

3 Subsystem Description 
3.1 Arm planning 
 
3.1.1 Algorithm/ Implementation 
For the purpose of generating feasible motion plans for the bi-manual 
manipulation of an object, the planning problem was decoupled into two 

Fig 3. Planning in MoveIt! 



separate single arm planning problems instead of one combined dual arm planning. Consequently, the 
planning problem then boils down to generating motion plans for 7 DOF arm that avoids self-collision 
and collision with the objects in the environment while respecting the kinematic constraints of the robot. 
We utilized the OMPL library under the Moveit! framework to carry out planning. Specifically, we 
employed RRT-Connect algorithm for motion planning of a single arm coupled. For environment 
representation and collision checking, we used the APIs provided in the Moveit! framework such as 
‘move_group’ and ‘move_group_interface’.  

3.1.2 Challenges 
 

Although we did not face any insurmountable challenge in implementing the sub-system alone, however, 
one challenge that we did stumble on was running the planner on the PR2 network. Due to 
unsynchronized times and time zones between the planner-running machine and the PR2 CPU, the 
network was flooded with ROS errors pertaining to ‘tf’ package. Additionally, we also observed that the 
virtual state of the robot maintained by the ‘move_group’ seemed to be affected by the ROS PR2 msgs 
being published by PR2 robot. A work around regarding this issue involved planning and writing the 
planned trajectory to a file offline. This file was then parsed by the Hardware Interface module to 
execute it on the PR2 robot while being connected to the PR2 network.  

3.1.3 Trade Study 
Two approaches that we considered for carrying out the arm planning are search-based planning 
approach and sampling based planning approach. For implementing the search-based planning approach, 
SBPL library (Weighted-A*) was intended to be used for which a planning environment needed to be 
implemented from scratch along with implementation of informative heuristics (BFS-3D) to guide the 
arm to the goal configuration. Contrary to this, implementing sampling based planning approach 
involved less implementation time as the RRT-Connect planner implementation was already available as 
an OMPL plug-in in the Moveit! framework. Although search-based planning generates intuitively better 
motion plans for the arms as compared to sampling based planning, however, keeping in view the scope 
and requirement of the project, both approaches were viable and fulfilled the required functionality of 
the project. Hence, we decided on going with the sampling based approach due to faster implementation 
time.  
 
 
3.2 Hardware Interface 

3.2.1 Algorithm 
 

The PR2 controllers use actionlib to receive requests for execution from the software in the form of 
FollowJointTrajectoryAction control messages. This is a very flexible interface which allows for a 
trajectory of points to be passed into the interface and the corresponding controller is able to generate a 
control strategy to follow the trajectory. To make this work we wrote a C++ ROS node that can accept a 
trajectory and pass these into the required controller. We have implemented this module and tested it on 
the PR2. An example demonstration can be found at this link.  

3.2.2 Challenges 
This module was the first one that we implemented thus we still weren’t well acquainted with the PR2 at 
the time, when we started writing this module we were using the wrong actionlib to communicate with 
the robot. We were using JointTrajectoryAction instead of FollowJointTrajectoryAction which was 
resulting in the robot not responding to our commands. Once we fixed this we were able to overcome 
this challenge. 

https://drive.google.com/open?id=1T19LnhnA7Fdt2-gD0Y1abdATvpuUZB1g


3.2.3 Trade Study 
There were no alternative methods to implement this module. The interface with the robot is fairly well-
defined and requires us to proceed in exactly this way. The reason for that is that the SBPL has existing 
nodes which listens to certain topics published in ROS Indigo and convert them to ROS Groovy. This 
helped us finalize the hardware interface early without much ambiguity on what method to choose.  
 
3.3 Perception 
 
3.3.1 Algorithm 
For this component we are using an April Tag detection 
based method to get the object pose (position and 
orientation). The Microsoft Kinect that is attached to the 
PR2 gives raw image data which the apriltag_ros and 
ar_track_alvar package is able to interpret and calculate 
the pose of the Apriltag. We have implemented this 
package and are able to get object pose information in 
real-time from a number of objects.  
 
3.3.2 Challenges  
The first challenge is the synchronization of the camera info and camera images topics. Every second 
camera info topic publishes more than a hundred messages, but the camera image topic only publishes 2 
messages. ROS cannot synchronize both topics so the perception system won’t detect the Apriltag 
reliably. The second challenge is that the field of view of the robot is limited, so the robot might not be 
able to see the bottle if it doesn’t move its head. In order to move PR2’s head, we have to write the script 
to make it look at its grippers so that the Apriltag on the objects will appear in the field of view of the 
robot. The third challenge is that the transformation between the objects to the PR2 base_link is hard to 
get due to the time synchronization issue between the PR2 and the local machine. The Apriltag node 
running on the local computer can publish the transformation between the camera and the objects. The 
PR2 can know the transformation between the camera and the base_link. However, PR2 cannot give the 
transformation between the objects to the base_link because the timestamp between the PR2 is different 
from the timestamp of the local machine. We can only manually write the script to get the 
transformations between base_link and objects from both PR2 and local machine. 

3.3.3 Trade Study 
There are many Apriltag implementations online in ROS Indigo version, but none of them use ROS 
Groovy version, so it can only run on the local computer which causes the time synchronization 
problem.  We used the Apirltag package from personal robotics lab at CMU. It provides Apriltags-cpp 
and Apriltag implementation to detect the 36h11 family tags. Even though it cannot synchronize the time 
perfectly, the system is still able to detect the Apriltag at a frequency of 1Hz. 
  
3.4 Grasp and Regrasp Planning 

3.4.1 Algorithm 
The goal of grasp and regrasp planning is generating collision free and natural grasping pair for both 
arms relative to the object. In our demonstration, we use left arm to pick the object from ground and 

Fig 4. AprilTag Detection 



right arm to regrasp and put the object in refrigerator. A set of valid grasps for every object are auto-
generated from OpenRave GraspingModel package offline. For each of the object, there will be 
approximately 50 valid grasps available.  
 
When grasp planning module starts, it will firstly filter out the list of single-arm grasps based on two 
criteria, grasp stability and prior knowledge. Grasp stability refers to grasp quality metrics and in our 
case, we use volume of ellipsoid in wrench space to measure it. Prior knowledge refers to grasping 
object’s initial pose as well as regrasping requirement. For the left arm which picks object from ground, 
we will filter out all grasps coming from bottom. For the right arm which picks object at the exchange 
point, we will restrict grasp from side in order to avoid arm colliding with table.  
 

After getting a set of filtered grasps for both arms, a double grasping list are 
generated by combining every two valid left and right grasps. We then test left and 
right arm’s grasps together in order to get a collision-free double grasping. The 
pairs are also ranked by both stability and distance. Stability refers to the minimum 
stability score for a single arm calculated by grasp quality metrics. The pregrasp 
poses relative to the object are generated from the first-ranking pair from double 
grasping list.  
 
The regrasp pose is determined based on the pregrasp poses. The right arm end 

effector pregrasp pose is predetermined and fixed in order to restrict it approach object from right 
direction. Based on the regrasp poses between left and right end effector, left end-effector pose will be 
calculated relative to right end effector. Thus, the pose for left end-effector in robot-base frame will be 
determined. The interchange location will be offset by 10 cm from left-effector’s pregrasp pose along 
grasping direction. 

3.4.2 Challenges 
The unexpected challenge faced in double grasping module is unsynchronized time between robot on-
board computer and our laptop. Due to this issue, even though our laptop is connected to ROS master 
launched in robot, TF information between robot internal links and pregrasp poses cannot be linked 
together. In order to solve this problem, we decided to subscribe to robot internal link and get 
camera_link to base_link transformation as tf_1, object to robot camera_link as tf_2, end effector to 
object transformation as tf_3. Then we manually calculate end effector transformation to base_link and 
publish the TF information.  

3.4.3 Trade Study 
The only trade study we have done is the method used to evaluate single grasping quality. However, all 
the several methods including volume of ellipsoid, minimum singular value of G, radius of largest 
centered sphere have generated similar results. The reason comes from the simplified object model as a 
cube and 2-linkage design of the gripper. We decided to use volume of ellipsoid as it provides descent 
results for all three objects. 

4 Evaluation 
Evaluation of individual subsystems in our project was mainly through simulation and objectively testing 
whether it performs the task that we are attempting. The arm planning module was simulated using fake 
controllers in MoveIt! and visualized in RViz. The grasping module was tested in the OpenRAVE 
simulation.  
 

Fig. 5 Regrasp Example 



Testing out the entire system in simulation would have required a large overhead of setting up the 
environment and sensors in Gazebo. Thus we chose to test the entire system on the robot itself. This also 
allowed us to improve the pipeline based on the difficulties faced by interfacing with the robot itself.  
 
The result of the evaluation was the successful implementation of the system on a particular object - 
Cheezits box. The video of the successful demonstration can be found here. While the video shows a 
successful execution, it required a few attempts to get it perfect because of minor changes in the 
environment affecting the performance.  
 
We achieved the main goal that we set out to do as stated in our midterm report. We were hoping to 
successfully perform regrasping of an object allowing the robot to pass objects from one hand to another 
and were able to achieve this. This fits in well with the motivation for pursuing this project which was to 
give robots the ability to use both arms smoothly thus allowing robots to perform a wider set of actions.  
 
The main limitation of the system currently is that the pipeline is not completely seamless. There is still 
some work to be done with the message passing from one node to another. The other limitation is the 
ability (or lack thereof) to perform high-level decision-making during the arm planning and grasping 
pipeline. This is crucial to allow replanning and online grasp calculations. It will also allow for grasp 
verification since there is a chance that the grasp is executed wrong which would result in an incorrect 
grip between the robot and object.  

5 Conclusion 
5.1 Work Division 
 
This project included several modules that required extensive development work. Hence we were able to 
divide work based on three broad functions:  

● Perception: Chien Chih Ho 
● Grasping Module: Pengsheng Guo and Oliver Krengel 
● Arm Planning and Hardware Interface: Rohit and Abdul  

 
Integrating these modules together was made easy because of the modularity offered by ROS. By 
publishing relevant messages from each node, we were effectively able to integrate the different 
modules. 
 
5.2 Unexpected Delays 
 
We faced a peculiar difficulty in interfacing with the PR2. We expected this to be the least difficult 
portion of the project but ultimately caused us to change our system integration. The system time on the 
PR2 was slightly different from our system time which was causing TF to give errors that flooded the 
system resulting in many dropped messages. TF is integral to converting the grasp pose from the object 
frame to the robot base frame.  
 
This problem was also the reason that the planned path being generated from the planner was not being 
subscribed by the hardware interface node. As a result, we had to find a workaround by parsing the 
trajectory into a file and then reading from it while sending to the PR2.  
 

https://drive.google.com/file/d/1W5WnN_lCYRpvihw2mV4h2w4W1way1XDH/view?usp=sharing


5.3 Challenges 
The first major unexpected challenge was before the midterm report due to a faulty power terminal 
which resulted in it being torn out. This set us back around a week till we were able to order a new part 
and replace said power terminal.  
 
Another major challenge was the hardware interface. While we figured out the correct way to use 
actionlib later on with the PR2, it posed a big challenge for us in the initial parts of the project. After 
learning the correct messages to interact with the PR2, this part was a lot smoother.  
 
5.4 Lessons Learned 
 
An important lesson that we learned is that it is crucial to fully understand and explore a robotic system 
before using it. This will help mitigate the main risk of unknown delays to the project, especially near 
the chaotic end of the project.  
 
We had initially planned on performing the regrasping online and our testing with the limited system 
shows that this was the right idea. Small mistakes in gripping the object could change the orientation of 
the object which would result in the regrasping pose being wrong. Thus we should make small changes 
in the regrasp pose based on the final position of object.  
 
5.5 Possible Improvements 
 
If we had to do the project again, we would attempt to test our different interfaces with the robot first 
before proceeding the rest of the development. This is because in order to manage the risks effectively, 
the main risks should be mitigated as early as possible.  
 
We would also have liked to have better modeled the environment early on in the project to make 
development work a lot easier. A lot of the arm planning code needed to be redone because of changes in 
the environment.  
 
 
Appendix 
 
The final compiled video can be found at this link. 
 

https://drive.google.com/file/d/1MhVH0vb7OWIqh0YY1c7cXIQ8X0937RVU/view?usp=sharing
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