
Abstract 

Animals move around the world in complex unstructured 
environments, seamlessly transiting between places where they 
have been before, and thus a prior is available, and other places 
they have never been to before. They operate for hours on end 
and simplify the overwhelming data gathered down to a few 
essential data inputs that allow them to operate effectively 
without being overflown with excessive information (in particular 
visual stimulation). In this paper, we present an extremely simple 
algorithm that allows any entity to move from an initial point to a 
target away point in an environment cluttered with multiple 
types of objects using only raw information from sensors as input 
without even the need to build a map. With the additional bonus 
that it is able to work real time, the robot will never get trapped 
in local minima, will typically chose the shortest path, or close to 
it, and will always find its own way provided that a solution is 
possible given the robot constraints (e.g. size to fit through spaces 
in between the obstacles). 
Index Terms— no prior knowledge of environment, raw sensor 
data, avoiding obstacles, circling obstacles, not trapped in local 
minima, real time operation  

I. INTRODUCTION 

Our main objective is to develop a simple algorithm whereby 
a robot can successfully navigate from point A to point B by 
relying solely on processing real time sensor information 
without any prior knowledge of the environment where it 
operates. A resilient algorithm whereby human sets the robot 
away point and the robot simply “figures out” how to get there 
without any human in the loop micro-managing has endless 
applications in drones, whether for missions of surveillance, 
mapping, delivery of cargo and people and many other 
applications we cannot phantom today. 

Hybrid systems were humans and machines are blended 
together in a loop have become a reality in recent years, with 
systems designed around the concept that humans prefer to be 
comfortably in control, without having to supervise every 
minute detail of operation [1]. This is akin to the way the 
human mind operates [2] [3] whereby the higher levels of the 
mind plan a path and most of the implementation and local 
control is delegated (down to the proper level in the hierarchy 
of the human brain) so that human abstract thinking is not 
overflown with needless detail.  

A. Past Work in obstacle avoidance algorithms 
The usage of vector fields to guide a robot was pioneered by 

Ronald C. Arkin, among others, in the 90’s and is normally 
referred to as “behavior-based-robotics”. The proponents of 
this approach foster dynamic planning in an unstructured 
environment as the basis for the definition of simple policies a 
robot can follow as the environment changes around it. 

In [4] and [5], this approach was materialized using a 

multilayered hierarchical architecture based on potential 
vector gradients that would drive a robot to a target, guide its 
avoidance of an obstacle, and perform successive tasks as 
distant gates were actioned (e.g. carry bucket after reaching 
it). 

B. What is different about the proposed algorithm 
The main issue with using a gradient as a guidance field is 

for obstacles, is that the robot can get trapped in local minima 
when operating in environments cluttered with obstacles. This 
happens as the field of several neighboring obstacles combines 
to generate points where the guidance field divergence is 
negative (where field lines “die”). 

In addition, the propose approaches in [4] and [5] typically 
involve integrating across multiple states and using algorithms 
akin to A star to select the path with the biggest payoff. This 
approach becomes particularly expensive in particular when 
on or more of the following conditions is verified: highly 
cluttered environments (where previously occluded 
information may imply planning dramatically different paths 
once an obstacle is overcome), multiple sensors fused together 
with dense data readings, robots that travel at high speeds.  

By relying solely on local information with map or forward 
multicycle integration, the presented algorithm will work 
mostly in constant time, thus making it more resilient to 
dramatic changes in the environment where the robot operates. 

C. Main intuition behind the algorithm design 
The algorithm proposed on this paper is based on 

computing a curl of a vector field, which does not generate 
local minima, and combining that with a gradient field point to 
the target where the only local minima will be located. In 
addition, to ensure that the robot does not “orbit” the objects 
longer than it should, the contribution of that obstacle to the 
guidance field is” disconnected” whenever it is deemed 
irrelevant for the task at hand: avoiding obstacles while going 
from point A to B. 

Finally, the algorithm works in two different modes: sparse 
and dense environment, seamlessly switching between the two 
modes. When in dense environment, the field rotation is kept 
constant for all sources (e.g. they all rotate counter-clock or 
clockwise). When in sparse environments, the fields rotate in a 
way that pushes the robot to pass in between the obstacles. 

As a proof of concept, we applied the algorithm in 
simulation to SR-10 toy tank robot. This robot has enough 
authority of control to rotate in place and thus allows for 
tremendous freedom of movement and authority of control, 
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that would not be available for example in a quadcopter. As a 
result, we have used a Gaussian profile for the generation of 
the “obstacle fields” given that it is a well-known function 
with fast decay, thus ideal for creating localized fields that 
don’t spread too far from the obstacle.  

For the application of this algorithm to a flying quadcopter, 
or any other vehicle with decreased authority of control, the 
algorithm would have to be adapted so that the obstacle field 
would scale with the available authority of control for the 
current dynamics. This would ensure that the guidance fields 
would not issue a command the quadcopter was not able to 
implement (for example, making a ninety degrees curve in 
mid-flight). 

II. DETAILED DESCRIPTION OF THE PROPOSED ALGORITHM 

The “guidance field” (G) is defined as: 

!  

where three different fields are linearly combined together: 

• “Target Field” (T): defined by the way point (can 
be changed at any time by the user) 

• “Hard obstacles field” (H): coming from the 
LIDAR hits, corresponds to obstacles that will not 
allow the robot progression (e.g. walls) 

• “Soft obstacles” (S): coming from the camera hits, 
corresponds to obstacles that cannot be captured by 
the LIDAR, but should also be avoided (e.g. sand 
or grass, ink markings on tarmac, ….) 

Both the obstacle guidance fields are dynamically computed 
at every iteration and orthogonal to the plane in which the 
robot operates. In both cases, their value will depend on the 
obstacle distance from the robot and its relative bearing 
position. 

A. Target Guidance Field 
The Target Field is defined as the stationary gradient field 

with local minima at the target point. This field was defined as 
independent from the target distance, with constant norm, in 
order to prevent conflict with the two other fields. The scaling 
constant should be small compared to the other two fields to 
give priority to the obstacle fields whenever needed. 

!  

where the target state is denoted by (xT,yT) and the current 
state coordinates by (x0,y0). The Obstacle Fields are both of 
the same exact form and differ only on the scaling constant to 
be used so that different level of responses can be enacted for 
different types of obstacles. These last two fields are created 
from sensors data and treated separately so that different 
weights can be given to the two types of obstacles: “hard” and 

“soft”.  

B. Hard obstacles guidance field: 
Each LIDAR hit will generate a different “hard obstacle 

field” that will be linearly combined across all N hits recorded 
at a particular instant: 

!  

!  

where, H0 and σ will be constant across all hard obstacles, 
describing respectively the maximum intensity of the hard 
obstacles field and its decay rate with distance, Di is a variable 
that can take one of three values: -1, 0 or 1 depending on the 
situation at hand. 

C. Soft obstacles guidance field: 
Each camera hit will generate a “soft obstacle field” that 

will equally be linearly combined across all M hits recorded at 
a particular instant: 

!  

!  

This feature was tested in simulation to prove that the 
algorithm would work seamlessly with different types of 
fields, but not rolled out to the final robot setup. 

D. Computing the direction of rotation (Dj) 

Depending on the mode selected, the algorithm will either 
use a common direction for all fields sources (dense mode) or 
differentiate the factor for each of the obstacles (sparse mode). 
While operating in the dense mode, the rotation direction will 
remain constant for all sources and equal to the previous step. 

While operating in the sparse mode, for both the Hard and 
Soft fields, the “direction factor correction” (Di) is defined for 
each obstacle as: 

!  

!  
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!  

where the dot product of the robot speed (V) and the vector 
point from the robot to the obstacle is computed to ensure the 
robot circles the obstacle taking the most appropriate option 
(for example opting for circling the object through the left of 
right sides).  

The D factor by default switches off the obstacles that are 
behind the robot, and thus irrelevant for its mission. The 
definition of “behind” is any object in the opposite direction of 
the robot movement (defined by its vector speed) regardless of 
the robot orientation at the moment tracked in the state vector. 

E. Switching between the sparse and dense modes 
The algorithm starts by drawing a direct line between the 

current position and the target position. Along that line, the 
algorithm measures the distance between the first obstacle 
above and the first obstacle below that line. Only the closest 
obstacles are relevant: 

Figure 1: Detecting relevant obstacles for mode selection 

!  

If the obstacles are separated by enough distance, the 
algorithm will operate in sparse mode. Otherwise it will 
operate in dense mode. To avoid switching back and forth 
between the two modes, a hysteresis cycle if forced by 
defining a bigger distance to switch from dense to sparse (we 
defined a factor of two) than from sparse to dense.  

Figure 2: Behavior induced across dense and sparse modes. 

!  

F. Input data to the algorithm 
The inputs from the LIDAR and the camera are transformed 
into a point cloud of hits that serve as inputs to the algorithm. 
By operating continuously with only the latest raw data 
available from the sensors, the robot is able to actively react to 

changes in the current environment, even avoiding dynamic 
obstacles. In the present form the robot is not able project the 
movement of obstacles but can seamlessly react to their new 
positions in the world frame. 

The hits from both the LIDAR and the camera are 
transformed into world coordinates in meters so that it can be 
fed into the guidance algorithm. This data is combined with 
the data flowing from the IMU and the localization 
development boards to access the current state and decide the 
next step. 

G. Simplified motor dynamics used in this paper 
In [6] a detailed deduction is presented for the interplay 
between the electric and mechanical load on an electric motor. 
Assuming the mechanical impedance is much larger than the 
mechanical impedance, the angular speed of a linear motor is: 

! (t) = !  

The decay constant ( !  is intrinsic to the system, while the 
steady speed will be determined by the load on the motor. For 
the purpose of this paper, we will ignore any transients and 
issue the motor controls as if the robot was always in steady 
state. 

This approach was approach was successful implemented in 
[7] and [8] where a steady state derived algorithm was used to 
in the TAEM section of the Space Shuttle’s reentry flight 
simulation. This can be applied whenever convergence to the 
steady state is fast relatively to the trajectory transverse by the 
robot, the controls inputs issued by the algorithm are smooth 
and motor controls are not buffered any circumstance (in case 
they cannot be executed old control inputs should be 
immediately replaced with the latest control). 

H. Motor inputs to align robot with guidance field 
The SR 10 is a differential drive robot that can move 

forward or rotate in place. Under a simplified kinematics 
approach described in [9] the motion model can be simplified 
as a rotation about an ICR (instantons center of rotation).  

Under this framework, when moving in a straight line, this 
point moves to infinity. However, the robot speed is well 
defined at all moments and with some algebraic manipulation 
it can be shown that under steady state: 

!  

where Vx and Vy are the robot speed components, wst the 
steady state angular speed, VR and VL are respectively the 
speeds of the right and left wheels of the robot, L the distance 
between two wheels sharing the same axes.  

m a x[0,vx0(xj − x0T) + vy0(yj − y0)]

θ́ θ́0e−γ*t + θ́st*(1 − e−γ*t)
γ

Vx = 1
2 (VL + VR)cos(θ0 + ωstt)

Vy = 1
2 (VL + VR)sin(θ0 + ωstt)

ωst = 1
L (VR − VL)



Whenever the guidance field is computed, the target 
alignment angle is derived from the guidance field at the 
robot’s current location using: 

!  

The motor control than issues a command to the motors that 
will deliver the desired angle in steady state and readjust its 
control input as the robot moves towards the intended 
location.  The misalignment angle is computed by the 
difference between the target alignment and the current 
alignment: 

!  

And the motor controls inputs are then given as per the 
following formulas dependent on current misalignment angle: 

if θ Target >= - π and θ Target < - π/2 
    Motor_Left_Multiplier= 2 + (θ Target +π/4)/(π/4); 
    Motor_Right_Multiplier= - 1; 
end 

if θ Target >= - π/2 and θ Target <0 
    Motor_Left_Multiplier= +1; 
    Motor_Right_Multiplier= 1 + θ Target /(π/4);     
end 

if θ Target >= 0 and θ Target < π / 2 
    Motor_Left_Multiplier= 1 - θ Target /(π/4); 
    Motor_Right_Multiplier= 1;    
end 

if θ Target >=π/2 and θ Target <=π 
    Motor_Left_Multiplier= - 1; 
    Motor_Right_Multiplier= 2 - (θ Target -π/4)/(π/4);    
end 

These commands are issued as target ratios against the 
maximum speed that are then transformed according to the 
motors torque curve that was previously calibrated in the lab. 

Given that the control is the acting solely on the robot 
orientation, the algorithm as an extra degree of freedom which 
is the actual speed of the robot. In this project, we set this 
target cruise speed at the beginning of every run.  

In this robot, with full authority of control including the 
ability to make turns in place, the algorithm is invariant 
against the target speed selected at the beginning of the run (as 
this target speed will only be achieved while travelling in a 
straight line). 

III. SYSTEMS ARCHITECTURE UNDER IMPLEMENTATION 
The systems architecture developed for this system can be 

summarized from a high-level point of view by the following 
diagram, that includes the primary owner of each module: 

Figure 3A: Functional architecture 

!  

Figure 3B: Cyberphysical architecture 

!  

Most software is written from scratch, reusing only standard 
ROS messaging modules and sensor data retrieval packages 
defined by the manufacturer.  The algorithms are also written 
by the team, specifically for this project, including the motors 
calibration controls. 

The full list of packages selected for the project is: 

1. OpenCV for Python 
2. ROS urg_node 
3. PyTorch 
4. Inferno 
5. DWM1001 packages 
6. BOSCH BNO055 IMU libraries 

A. Robot body frame sub-system 
This project was mounted on top of the body frame of a 

scaled SR 10 tank, that we have deeply customized for the 
purposes of this project. We used the original frame of the or 
SR 10 system as a starting point and rebuilt its entire 
electronics for the purpose of this project. 

B. Central sub-system 
The central sub-system is the brain of the system, in charge 

of parsing all the data from the sensors, transforming it into 
world coordinates to compute the guidance fields, computing 
the guidance fields and transforming that into a motor input to 
drive the robot to the next state in tandem with the target state 
defined and the existing obstacles. This central sub-system is 
powered by a Jetson TX2.  

• Inputs: target state, LIDAR, camera, IMU (current 
state estimation) 

• Outputs: Guidance field, Motor commands 

θtarget = a ta n 2(Gy, Gx)

δθ = θtarget − θ0



C. LIDAR integration 
The LIDAR is the sensor in charge of finding all the hard 

surfaces the robot needs to avoid. It is powered by a Hokuyo 
Urg-04lx scans the 2D plane the robot operates in. 

• Inputs: reflections from infrared lasers fired by the 
LIDAR 

• Outputs: distance and bearing hits of hard obstacles. 

D. Vision system 
The vision sub-system scans the textures of the surrounding 

environment to detect soft obstacles that can not show up in 
laser range finders scans (LIDARs), such as grass, sand or 
markings on the tarmac. This sub-system is powered by the 
Microsoft HD cam designed for outdoor operation. 

• Inputs: visible light from the environment 

• Outputs: digital images that will be transformed into 
point clouds of soft obstacles by the central sub-
system. 

Note: The vision system was descoped in our robot 
implementation as it was a stretch goal using a neural network. 

E. State estimation system 
This sub-system is composed by two high precision IMUs, 

one measuring the position (DWM1001 Development boards 
for localization) and the other the orientation (Adafruit 
BNO055). We also have access to the wheel encoder acting as 
secondary system (that is not as reliable given that we will be 
operating indoors where wheel slip makes it less reliable and 
is described in the motors section). The IMU sub-system is 
powered by the DWM1001 Development boards for 
localization. 

• Inputs: inertial readings 

• Outputs: current location, linear speed, angular 
orientation, current angular speed 

F. Motor control and calibration 
The motors sub-system is made of three components: the 

Arduino UNO coupled to a drive board to control the motors, 
a hall effect to monitor the motor rotational speed and the DC 
motors. The system was designed to operate real time without 
any buffer so that commands that cannot be executed in time 
are simply ignored for the new commands to fed into the 
motors. This is of particular importance for a real time 
operation algorithm such as the one being implemented in this 
project.  

Arduino UNO + Motor Drive board 

• Inputs: motor commands from the central sub-system 

• Outputs: motor commands 

9v DC motors with attached encoders 

• Inputs: motor commands from the Arduino UNO 

• Outputs: torque to move the robot 

Hall effect wheel encoders 

• Inputs: wheel turning readings 

• Outputs: wheel turning readings 

G. Results obtained: robot setup 
We finalized all hardware and software deployment in our 

SR10 robot. We opted for ROS based environment so that we 
could seamless integrated multiple sensors operating at 
different frequency rates. 

We have also tested in simulation the first version of the 
algorithm (developed in Matlab) and ported it to Phyton to be 
deployed in the ROS environment that was setup in the Jetson 
TX2. The initial prototype was done in Matlab so that we 
could leverage all the graphical abilities during the debugging 
and testing phases. Phyton was selected as deployment 
language due to its fast performance. 

The IMUs were selected so that we could operate indoors 
and outdoors with high precision. The development boards are 
connected by Bluetooth. We opted for complementing these 
with a traditional IMU so that we could leverage, at a low 
cost, the best state estimations both systems could provide. 

The motors calibration was done with and without load. 
This proved particularly important given that a low energy 
dead-band was detected, different responses to the same input 
power were detected across the two motors, and their 
transients were confirmed to be fast enough to be ignored for 
the purpose of this project (a robot operating on low speeds <3 
m/s).  

The Hokuyo LIDAR was selected due to its affordability 
and the fact that it only generates a 2D scan, thus a small point 
cloud that will allow us to focus the computational power of 
the Jetson TX2 on the controlling the overall system (and not 
only on parsing 3D point clouds as would be the case if we 
had for example selected a Velodyne). 

The HD camera was selected by its ability to operate in an 
outdoors environment across multiple lightning conditions, the 
plug and play feature and its low weight. This was one of our 
stretch goals and was made available for future work although 
we did not connect it to the algorithm and the neural network 
we started working on. 

H. Results obtained: Algorithm in simulation 
The first algorithm runs were made in Matlab using a 
simplified Euler numerical integration with the following 
parameters: 



• Target state = {xT, yT, free, free, free, free} 
• Initial state= {x0,y0,θ0, vx0,vy0,w0}={0,0,0,0,0} 
• L = 0.2 m (distance between wheels sharing an axle) 
• W = 0.1 (distance between wheel axes) 
• σ^2 =( ½*max (L,W) + Clearance Distance)^2/ln 

(2)= 6 m^2 
• Vst = 3. m/s 
• Integration time: 0.1s 

The following obstacles where set: 

x_H_Obs= [30 30 20 20 20 20 20 20 20 20 20]; 

y_H_Obs= [25 20 30 25 20 15 10 5 0 11 13]; 

x_S_Obs= [+2 +4 +6 +8 +20 +12 +35 +20 +45]; 

y_S_Obs= [+5 +5 +5 +5 +5 +10 +15 +12.5 +5]; 

The following scaling constants were used for the guidance 
field: S0=H0=1.0 and T0=.01 (target field scaling constant). 
The target state is marked in green, the guidance field for the 
first step is marked in blue, the hard obstacles are marked in 
black, the soft obstacles are marked in magenta and the 
selected trajectory in red. 

Figure 4: Simulation results in Matlab (sparse) 

!  
Additional runs were done for dense environments where 

the algorithm was also able to operate as expected. We need to 
stress that this is a local algorithm that was designed for sparse 
environments.  

The algorithm is not complete, because it does not have 
memory or learning abilities. Therefore, it can get trapped in a 
loop when no solution is made available. It also does not 
ensure optimal paths because it operates real time and makes 
its decisions based solely on the best information available at 
the moment. This algorithm was designed to be deployed in 
air vessel, acting as a security feature to prevent collisions 
with obstacles. The choice of the ground robot for this project 
was done so that we could have a proof of concept without 
worrying with the robot’s authority of control. 

Figure 5: Simulation in Matlab (dense) 

! ` 

Figure 6: Simulation in Matlab: failure to return error on a 
path to narrow to cross 

!  

Figure 7: Simulation in Matlab: failure to find the most 
optimal path given that the first selected rotation (counter-
clock) was not the optimal choice 

!  

I. Results obtained: Motor calibration 
We have finalized the motors calibration with and without 
load and it showed that the not only the two motors behave 
differently, they have a dead energy band for low voltage 
inputs from the Arduino (255 corresponds to +5 V and 255 to 
– 5V that are then converted to +12 to – 12 V by the motor 
drive board). 

Each of the motor brunches was fitted with a third level 
polynomial with chi^2 > 0.992 that will be used in converting 
the motors input so that they behave exactly the same way 
when given the same input from the algorithm. 

Figure 5: Motors calibration without load 



!  

The final calibration can be found in the code uploaded 
together with this assignment 

J. Results obtained: Algorithm deployment in real robot 

After all the code was integrated in the robot, we initiated 
sub-system testing. The first tests where done with the IMU/
Localization boards to check that we could measure the state 
of the robot and got consistent measurements for the target 
point we had defined (x_t=2 m, y_t=2m). 

IV. CHALLENGES AND FUTURE WORK 

The first challenge that we faced was performing detailed 
trade studies across the different sub-systems in the market to 
ensure that we had a good performance at a fair price, in 
particular because we are financing the project ourselves. 

The second challenge was fine tuning the obstacle 
avoidance algorithm (in simulation) to ignore objects when 
they become irrelevant while still ensuring the robot always 
picked a “smart” direction to circle the robot while 
transversing a sparse environment. This implied the need to 
seamlessly switch between the sparse and dense modes 
without generating instabilities or trapping the robot. 

Finally, when we deployed all the code in the robot, we had 
several integration problems we had not anticipated (overflow 
in the Arduino, wrong heading axes built for the LIDAR data, 
misalignment in the initial heading of the IMU and the 
localization modules). This reminded us that simulation is 
much easier than real life! 

We got a good video of the target guidance, and also, 
another good video for obstacle avoidance without target 
guidance (kind of a random walker). Both of them uploaded 
a t : h t t p s : / / d r i v e . g o o g l e . c o m / o p e n ?
id=1tYahK1XoO-8VFFP2wF5T4Tc8tDGrqXhP 

Future work during the summer 
For the purposes of this paper the algorithm was defined 

over a 2D plane, but it can be extended in future work to 3D 
environments. During the summer, Nihar and Joao plan to 
extend the algorithm to a quadcopter during their internship at 
Near Earth Autonomy. Instead of a target the code will accept 
a pilot input. The obstacles will equally come from a LIDAR 
scanner (this time a Velodyne VPL - 16). 

 This internship will leverage on the MRSD project work 
where a helicopter pilot aid was developed combining sound 
and visual warnings with an emergency break feature (that 
stops when obstacles show up in the quadcopter path, while in 
this project we are working with an algorithm that would 
instead circle the obstacle). 
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