
Abstract

Animals move around the world in complex unstructured
environments, seamlessly transiting between places where they
have been before, and thus a prior is available, and other places
they have never been to before. They operate for hours on end
and simplify the overwhelming data gathered down to a few
essential data inputs that allow them to operate effectively
without being overflown with excessive information (in particular
visual stimulation). In this paper, we present an extremely simple
algorithm that allows any entity to move from an initial point to a
target away point in an environment cluttered with multiple
types of objects using only raw information from sensors as input
without even the need to build a map. With the additional bonus
that it is able to work real time, the robot will never get trapped
in local minima, will typically chose the shortest path, or close to
it, and will always find its own way provided that a solution is
possible given the robot constraints (e.g. size to fit through spaces
in between the obstacles).
Index Terms— no prior knowledge of environment, raw sensor
data, avoiding obstacles, circling obstacles, not trapped in local
minima, real time operation

I. INTRODUCTION

Our main objective is to develop a simple algorithm whereby
a robot can successfully navigate from point A to point B by
relying solely on processing real time sensor information
without any prior knowledge of the environment where it
operates. A resilient algorithm whereby human sets the robot
away point and the robot simply “figures out” how to get there
without any human in the loop micro-managing has endless
applications in drones, whether for missions of surveillance,
mapping, delivery of cargo and people and many other
applications we cannot phantom today.

Hybrid systems were humans and machines are blended
together in a loop have become a reality in recent years, with
systems designed around the concept that humans prefer to be
comfortably in control, without having to supervise every
minute detail of operation [1]. This is akin to the way the
human mind operates [2] [3] whereby the higher levels of the
mind plan a path and most of the implementation and local
control is delegated (down to the proper level in the hierarchy
of the human brain) so that human abstract thinking is not
overflown with needless detail.

A. Past Work in obstacle avoidance algorithms
The usage of vector fields to guide a robot was pioneered by

Ronald C. Arkin, among others, in the 90’s and is normally
referred to as “behavior-based-robotics”. The proponents of
this approach foster dynamic planning in an unstructured
environment as the basis for the definition of simple policies a
robot can follow as the environment changes around it.

In [4] and [5], this approach was materialized using a

multilayered hierarchical architecture based on potential
vector gradients that would drive a robot to a target, guide its
avoidance of an obstacle, and perform successive tasks as
distant gates were actioned (e.g. carry bucket after reaching
it).

B. What is different about the proposed algorithm
The main issue with using a gradient as a guidance field is

for obstacles, is that the robot can get trapped in local minima
when operating in environments cluttered with obstacles. This
happens as the field of several neighboring obstacles combines
to generate points where the guidance field divergence is
negative (where field lines “die”).

In addition, the propose approaches in [4] and [5] typically
involve integrating across multiple states and using algorithms
akin to A star to select the path with the biggest payoff. This
approach becomes particularly expensive in particular when
on or more of the following conditions is verified: highly
cluttered environments (where previously occluded
information may imply planning dramatically different paths
once an obstacle is overcome), multiple sensors fused together
with dense data readings, robots that travel at high speeds.

By relying solely on local information with map or forward
multicycle integration, the presented algorithm will work
mostly in constant time, thus making it more resilient to
dramatic changes in the environment where the robot operates.

C. Main intuition behind the algorithm design
The algorithm proposed on this paper is based on

computing a curl of a vector field, which does not generate
local minima, and combining that with a gradient field point to
the target where the only local minima will be located. In
addition, to ensure that the robot does not “orbit” the objects
longer than it should, the contribution of that obstacle to the
guidance field is” disconnected” whenever it is deemed
irrelevant for the task at hand: avoiding obstacles while going
from point A to B.

Finally, the algorithm works in two different modes: sparse
and dense environment, seamlessly switching between the two
modes. When in dense environment, the field rotation is kept
constant for all sources (e.g. they all rotate counter-clock or
clockwise). When in sparse environments, the fields rotate in a
way that pushes the robot to pass in between the obstacles.

As a proof of concept, we applied the algorithm in
simulation to SR-10 toy tank robot. This robot has enough
authority of control to rotate in place and thus allows for
tremendous freedom of movement and authority of control,

Finding your way using only raw data from the
Sai Nihar Tadichetty, Joao Fonseca Reis, Luka Eerens, Keerthana P G

that would not be available for example in a quadcopter. As a
result, we have used a Gaussian profile for the generation of
the “obstacle fields” given that it is a well-known function
with fast decay, thus ideal for creating localized fields that
don’t spread too far from the obstacle.

For the application of this algorithm to a flying quadcopter,
or any other vehicle with decreased authority of control, the
algorithm would have to be adapted so that the obstacle field
would scale with the available authority of control for the
current dynamics. This would ensure that the guidance fields
would not issue a command the quadcopter was not able to
implement (for example, making a ninety degrees curve in
mid-flight).

II. DETAILED DESCRIPTION OF THE PROPOSED ALGORITHM

The “guidance field” (G) is defined as:

!

where three different fields are linearly combined together:

• “Target Field” (T): defined by the way point (can
be changed at any time by the user)

• “Hard obstacles field” (H): coming from the
LIDAR hits, corresponds to obstacles that will not
allow the robot progression (e.g. walls)

• “Soft obstacles” (S): coming from the camera hits,
corresponds to obstacles that cannot be captured by
the LIDAR, but should also be avoided (e.g. sand
or grass, ink markings on tarmac, ….)

Both the obstacle guidance fields are dynamically computed
at every iteration and orthogonal to the plane in which the
robot operates. In both cases, their value will depend on the
obstacle distance from the robot and its relative bearing
position.

A. Target Guidance Field
The Target Field is defined as the stationary gradient field

with local minima at the target point. This field was defined as
independent from the target distance, with constant norm, in
order to prevent conflict with the two other fields. The scaling
constant should be small compared to the other two fields to
give priority to the obstacle fields whenever needed.

!

where the target state is denoted by (xT,yT) and the current
state coordinates by (x0,y0). The Obstacle Fields are both of
the same exact form and differ only on the scaling constant to
be used so that different level of responses can be enacted for
different types of obstacles. These last two fields are created
from sensors data and treated separately so that different
weights can be given to the two types of obstacles: “hard” and

“soft”.

B. Hard obstacles guidance field:
Each LIDAR hit will generate a different “hard obstacle

field” that will be linearly combined across all N hits recorded
at a particular instant:

!

!

where, H0 and σ will be constant across all hard obstacles,
describing respectively the maximum intensity of the hard
obstacles field and its decay rate with distance, Di is a variable
that can take one of three values: -1, 0 or 1 depending on the
situation at hand.

C. Soft obstacles guidance field:
Each camera hit will generate a “soft obstacle field” that

will equally be linearly combined across all M hits recorded at
a particular instant:

!

!

This feature was tested in simulation to prove that the
algorithm would work seamlessly with different types of
fields, but not rolled out to the final robot setup.

D. Computing the direction of rotation (Dj)

Depending on the mode selected, the algorithm will either
use a common direction for all fields sources (dense mode) or
differentiate the factor for each of the obstacles (sparse mode).
While operating in the dense mode, the rotation direction will
remain constant for all sources and equal to the previous step.

While operating in the sparse mode, for both the Hard and
Soft fields, the “direction factor correction” (Di) is defined for
each obstacle as:

!

!

→
G =

→
T +

→
H +

→
S

→
T =

→
∇Φ = T0

(xT − x0, yT − y0, 0)
(xT − x0)2 + (yT − y0)2

→
H =

i=N

∑
i=0

→
Hi =

→
∇ x

→
A =

→
∇ x 0,0, HOe

−(xi − x0)2 + (yi − y0)2

σ2 =

i=N

∑
i=0

(yi − y0, − xi + x0, 0)HODie
−(xi − x0)2 + (yi − y0)2

σ2

→
S =

j=M

∑
j=0

→
Hj =

→
∇ x

→
B =

→
∇ x 0,0, SOe

−(xj − x0)2
+ (yj − y0)2

σ2 =

j=M

∑
j=0

(yj − y0, − xj + x0, 0)SODje
−(xi − x0)2 + (yi − y0)2

σ2

→
Dj = m a x[0,→v . (rj − r0)] =

m a x[[0,(vx0, vy0, 0) . (xj − x0, yj − y0, 0)]] =

!

where the dot product of the robot speed (V) and the vector
point from the robot to the obstacle is computed to ensure the
robot circles the obstacle taking the most appropriate option
(for example opting for circling the object through the left of
right sides).

The D factor by default switches off the obstacles that are
behind the robot, and thus irrelevant for its mission. The
definition of “behind” is any object in the opposite direction of
the robot movement (defined by its vector speed) regardless of
the robot orientation at the moment tracked in the state vector.

E. Switching between the sparse and dense modes
The algorithm starts by drawing a direct line between the

current position and the target position. Along that line, the
algorithm measures the distance between the first obstacle
above and the first obstacle below that line. Only the closest
obstacles are relevant:

Figure 1: Detecting relevant obstacles for mode selection

!

If the obstacles are separated by enough distance, the
algorithm will operate in sparse mode. Otherwise it will
operate in dense mode. To avoid switching back and forth
between the two modes, a hysteresis cycle if forced by
defining a bigger distance to switch from dense to sparse (we
defined a factor of two) than from sparse to dense.

Figure 2: Behavior induced across dense and sparse modes.

!

F. Input data to the algorithm
The inputs from the LIDAR and the camera are transformed
into a point cloud of hits that serve as inputs to the algorithm.
By operating continuously with only the latest raw data
available from the sensors, the robot is able to actively react to

changes in the current environment, even avoiding dynamic
obstacles. In the present form the robot is not able project the
movement of obstacles but can seamlessly react to their new
positions in the world frame.

The hits from both the LIDAR and the camera are
transformed into world coordinates in meters so that it can be
fed into the guidance algorithm. This data is combined with
the data flowing from the IMU and the localization
development boards to access the current state and decide the
next step.

G. Simplified motor dynamics used in this paper
In [6] a detailed deduction is presented for the interplay
between the electric and mechanical load on an electric motor.
Assuming the mechanical impedance is much larger than the
mechanical impedance, the angular speed of a linear motor is:

! (t) = !

The decay constant (! is intrinsic to the system, while the
steady speed will be determined by the load on the motor. For
the purpose of this paper, we will ignore any transients and
issue the motor controls as if the robot was always in steady
state.

This approach was approach was successful implemented in
[7] and [8] where a steady state derived algorithm was used to
in the TAEM section of the Space Shuttle’s reentry flight
simulation. This can be applied whenever convergence to the
steady state is fast relatively to the trajectory transverse by the
robot, the controls inputs issued by the algorithm are smooth
and motor controls are not buffered any circumstance (in case
they cannot be executed old control inputs should be
immediately replaced with the latest control).

H. Motor inputs to align robot with guidance field
The SR 10 is a differential drive robot that can move

forward or rotate in place. Under a simplified kinematics
approach described in [9] the motion model can be simplified
as a rotation about an ICR (instantons center of rotation).

Under this framework, when moving in a straight line, this
point moves to infinity. However, the robot speed is well
defined at all moments and with some algebraic manipulation
it can be shown that under steady state:

!

where Vx and Vy are the robot speed components, wst the
steady state angular speed, VR and VL are respectively the
speeds of the right and left wheels of the robot, L the distance
between two wheels sharing the same axes.

m a x[0,vx0(xj − x0T) + vy0(yj − y0)]

θ́ θ́0e−γ*t + θ́st*(1 − e−γ*t)
γ

Vx = 1
2 (VL + VR)cos(θ0 + ωstt)

Vy = 1
2 (VL + VR)sin(θ0 + ωstt)

ωst = 1
L (VR − VL)

Whenever the guidance field is computed, the target
alignment angle is derived from the guidance field at the
robot’s current location using:

!

The motor control than issues a command to the motors that
will deliver the desired angle in steady state and readjust its
control input as the robot moves towards the intended
location. The misalignment angle is computed by the
difference between the target alignment and the current
alignment:

!

And the motor controls inputs are then given as per the
following formulas dependent on current misalignment angle:

if θ Target >= - π and θ Target < - π/2
 Motor_Left_Multiplier= 2 + (θ Target +π/4)/(π/4);
 Motor_Right_Multiplier= - 1;
end

if θ Target >= - π/2 and θ Target <0
 Motor_Left_Multiplier= +1;
 Motor_Right_Multiplier= 1 + θ Target /(π/4);
end

if θ Target >= 0 and θ Target < π / 2
 Motor_Left_Multiplier= 1 - θ Target /(π/4);
 Motor_Right_Multiplier= 1;
end

if θ Target >=π/2 and θ Target <=π
 Motor_Left_Multiplier= - 1;
 Motor_Right_Multiplier= 2 - (θ Target -π/4)/(π/4);
end

These commands are issued as target ratios against the
maximum speed that are then transformed according to the
motors torque curve that was previously calibrated in the lab.

Given that the control is the acting solely on the robot
orientation, the algorithm as an extra degree of freedom which
is the actual speed of the robot. In this project, we set this
target cruise speed at the beginning of every run.

In this robot, with full authority of control including the
ability to make turns in place, the algorithm is invariant
against the target speed selected at the beginning of the run (as
this target speed will only be achieved while travelling in a
straight line).

III. SYSTEMS ARCHITECTURE UNDER IMPLEMENTATION
The systems architecture developed for this system can be

summarized from a high-level point of view by the following
diagram, that includes the primary owner of each module:

Figure 3A: Functional architecture

!

Figure 3B: Cyberphysical architecture

!

Most software is written from scratch, reusing only standard
ROS messaging modules and sensor data retrieval packages
defined by the manufacturer. The algorithms are also written
by the team, specifically for this project, including the motors
calibration controls.

The full list of packages selected for the project is:

1. OpenCV for Python
2. ROS urg_node
3. PyTorch
4. Inferno
5. DWM1001 packages
6. BOSCH BNO055 IMU libraries

A. Robot body frame sub-system
This project was mounted on top of the body frame of a

scaled SR 10 tank, that we have deeply customized for the
purposes of this project. We used the original frame of the or
SR 10 system as a starting point and rebuilt its entire
electronics for the purpose of this project.

B. Central sub-system
The central sub-system is the brain of the system, in charge

of parsing all the data from the sensors, transforming it into
world coordinates to compute the guidance fields, computing
the guidance fields and transforming that into a motor input to
drive the robot to the next state in tandem with the target state
defined and the existing obstacles. This central sub-system is
powered by a Jetson TX2.

• Inputs: target state, LIDAR, camera, IMU (current
state estimation)

• Outputs: Guidance field, Motor commands

θtarget = a ta n 2(Gy, Gx)

δθ = θtarget − θ0

C. LIDAR integration
The LIDAR is the sensor in charge of finding all the hard

surfaces the robot needs to avoid. It is powered by a Hokuyo
Urg-04lx scans the 2D plane the robot operates in.

• Inputs: reflections from infrared lasers fired by the
LIDAR

• Outputs: distance and bearing hits of hard obstacles.

D. Vision system
The vision sub-system scans the textures of the surrounding

environment to detect soft obstacles that can not show up in
laser range finders scans (LIDARs), such as grass, sand or
markings on the tarmac. This sub-system is powered by the
Microsoft HD cam designed for outdoor operation.

• Inputs: visible light from the environment

• Outputs: digital images that will be transformed into
point clouds of soft obstacles by the central sub-
system.

Note: The vision system was descoped in our robot
implementation as it was a stretch goal using a neural network.

E. State estimation system
This sub-system is composed by two high precision IMUs,

one measuring the position (DWM1001 Development boards
for localization) and the other the orientation (Adafruit
BNO055). We also have access to the wheel encoder acting as
secondary system (that is not as reliable given that we will be
operating indoors where wheel slip makes it less reliable and
is described in the motors section). The IMU sub-system is
powered by the DWM1001 Development boards for
localization.

• Inputs: inertial readings

• Outputs: current location, linear speed, angular
orientation, current angular speed

F. Motor control and calibration
The motors sub-system is made of three components: the

Arduino UNO coupled to a drive board to control the motors,
a hall effect to monitor the motor rotational speed and the DC
motors. The system was designed to operate real time without
any buffer so that commands that cannot be executed in time
are simply ignored for the new commands to fed into the
motors. This is of particular importance for a real time
operation algorithm such as the one being implemented in this
project.

Arduino UNO + Motor Drive board

• Inputs: motor commands from the central sub-system

• Outputs: motor commands

9v DC motors with attached encoders

• Inputs: motor commands from the Arduino UNO

• Outputs: torque to move the robot

Hall effect wheel encoders

• Inputs: wheel turning readings

• Outputs: wheel turning readings

G. Results obtained: robot setup
We finalized all hardware and software deployment in our

SR10 robot. We opted for ROS based environment so that we
could seamless integrated multiple sensors operating at
different frequency rates.

We have also tested in simulation the first version of the
algorithm (developed in Matlab) and ported it to Phyton to be
deployed in the ROS environment that was setup in the Jetson
TX2. The initial prototype was done in Matlab so that we
could leverage all the graphical abilities during the debugging
and testing phases. Phyton was selected as deployment
language due to its fast performance.

The IMUs were selected so that we could operate indoors
and outdoors with high precision. The development boards are
connected by Bluetooth. We opted for complementing these
with a traditional IMU so that we could leverage, at a low
cost, the best state estimations both systems could provide.

The motors calibration was done with and without load.
This proved particularly important given that a low energy
dead-band was detected, different responses to the same input
power were detected across the two motors, and their
transients were confirmed to be fast enough to be ignored for
the purpose of this project (a robot operating on low speeds <3
m/s).

The Hokuyo LIDAR was selected due to its affordability
and the fact that it only generates a 2D scan, thus a small point
cloud that will allow us to focus the computational power of
the Jetson TX2 on the controlling the overall system (and not
only on parsing 3D point clouds as would be the case if we
had for example selected a Velodyne).

The HD camera was selected by its ability to operate in an
outdoors environment across multiple lightning conditions, the
plug and play feature and its low weight. This was one of our
stretch goals and was made available for future work although
we did not connect it to the algorithm and the neural network
we started working on.

H. Results obtained: Algorithm in simulation
The first algorithm runs were made in Matlab using a
simplified Euler numerical integration with the following
parameters:

• Target state = {xT, yT, free, free, free, free}
• Initial state= {x0,y0,θ0, vx0,vy0,w0}={0,0,0,0,0}
• L = 0.2 m (distance between wheels sharing an axle)
• W = 0.1 (distance between wheel axes)
• σ^2 =(½*max (L,W) + Clearance Distance)^2/ln

(2)= 6 m^2
• Vst = 3. m/s
• Integration time: 0.1s

The following obstacles where set:

x_H_Obs= [30 30 20 20 20 20 20 20 20 20 20];

y_H_Obs= [25 20 30 25 20 15 10 5 0 11 13];

x_S_Obs= [+2 +4 +6 +8 +20 +12 +35 +20 +45];

y_S_Obs= [+5 +5 +5 +5 +5 +10 +15 +12.5 +5];

The following scaling constants were used for the guidance
field: S0=H0=1.0 and T0=.01 (target field scaling constant).
The target state is marked in green, the guidance field for the
first step is marked in blue, the hard obstacles are marked in
black, the soft obstacles are marked in magenta and the
selected trajectory in red.

Figure 4: Simulation results in Matlab (sparse)

!
Additional runs were done for dense environments where

the algorithm was also able to operate as expected. We need to
stress that this is a local algorithm that was designed for sparse
environments.

The algorithm is not complete, because it does not have
memory or learning abilities. Therefore, it can get trapped in a
loop when no solution is made available. It also does not
ensure optimal paths because it operates real time and makes
its decisions based solely on the best information available at
the moment. This algorithm was designed to be deployed in
air vessel, acting as a security feature to prevent collisions
with obstacles. The choice of the ground robot for this project
was done so that we could have a proof of concept without
worrying with the robot’s authority of control.

Figure 5: Simulation in Matlab (dense)

! `

Figure 6: Simulation in Matlab: failure to return error on a
path to narrow to cross

!

Figure 7: Simulation in Matlab: failure to find the most
optimal path given that the first selected rotation (counter-
clock) was not the optimal choice

!

I. Results obtained: Motor calibration
We have finalized the motors calibration with and without
load and it showed that the not only the two motors behave
differently, they have a dead energy band for low voltage
inputs from the Arduino (255 corresponds to +5 V and 255 to
– 5V that are then converted to +12 to – 12 V by the motor
drive board).

Each of the motor brunches was fitted with a third level
polynomial with chi^2 > 0.992 that will be used in converting
the motors input so that they behave exactly the same way
when given the same input from the algorithm.

Figure 5: Motors calibration without load

!

The final calibration can be found in the code uploaded
together with this assignment

J. Results obtained: Algorithm deployment in real robot

After all the code was integrated in the robot, we initiated
sub-system testing. The first tests where done with the IMU/
Localization boards to check that we could measure the state
of the robot and got consistent measurements for the target
point we had defined (x_t=2 m, y_t=2m).

IV. CHALLENGES AND FUTURE WORK

The first challenge that we faced was performing detailed
trade studies across the different sub-systems in the market to
ensure that we had a good performance at a fair price, in
particular because we are financing the project ourselves.

The second challenge was fine tuning the obstacle
avoidance algorithm (in simulation) to ignore objects when
they become irrelevant while still ensuring the robot always
picked a “smart” direction to circle the robot while
transversing a sparse environment. This implied the need to
seamlessly switch between the sparse and dense modes
without generating instabilities or trapping the robot.

Finally, when we deployed all the code in the robot, we had
several integration problems we had not anticipated (overflow
in the Arduino, wrong heading axes built for the LIDAR data,
misalignment in the initial heading of the IMU and the
localization modules). This reminded us that simulation is
much easier than real life!

We got a good video of the target guidance, and also,
another good video for obstacle avoidance without target
guidance (kind of a random walker). Both of them uploaded
a t : h t t p s : / / d r i v e . g o o g l e . c o m / o p e n ?
id=1tYahK1XoO-8VFFP2wF5T4Tc8tDGrqXhP

Future work during the summer
For the purposes of this paper the algorithm was defined

over a 2D plane, but it can be extended in future work to 3D
environments. During the summer, Nihar and Joao plan to
extend the algorithm to a quadcopter during their internship at
Near Earth Autonomy. Instead of a target the code will accept
a pilot input. The obstacles will equally come from a LIDAR
scanner (this time a Velodyne VPL - 16).

 This internship will leverage on the MRSD project work
where a helicopter pilot aid was developed combining sound
and visual warnings with an emergency break feature (that
stops when obstacles show up in the quadcopter path, while in
this project we are working with an algorithm that would
instead circle the obstacle).

ACKNOWLEDGMENTS
We would like to thank CMU professors Matthew Travers
(project advisor) and Oliver Kroemer (Robot Autonomy for
which class this project was conceived) for the freedom they
have allowed us in designing this project and the tips they
have provided along the way.

REFERENCES
1. “Mixed Initiative Control of a Roadable Air Vehicle for Non-Pilots”,

Michael C. Dorneich1, Emmanuel Letsu-Dake, Sanjiv Singh, Sebastian
Scherer, Lyle Chamberlain, Marcel Bergerman, Journal of Human-Robot
Interaction, Vol. 4, No. 3, 2015,

2. “Development of the Side Component of the Transit Integrated Collision
Warning System”, Aaron Steinfeld, David Duggins, Jay Gowdy, John
Kozar, Robert MacLachlan, Christoph Mertz, Arne Suppe, Charles
Thorpe, Chieh-Chih Wang - 2004 IEEE Intelligent Transportation
Systems Conference, Washington, D.C., USA, October 3-6, 2004

3. “Automotive HUDs: The Overlooked Safety Issues”, Daniel R. Tufano,
Human Factors: The Journal of the Human Factors and Ergonomics
Society 1997 39: 303

4. “Motor Schema – Based Mobile Robot Navigation”, Ronald C. Arkin,
Proceedings of the IEEE International Conference on Robotics and
Automation, April 1987

5. “AuRa: Principles and Practice in Review”, Ronald C. Arkin and Tucker
Balch, algorithm implemented in the winner of the 1994 AAAI Mobile
Robots Competition

6. “Robot Modelling and Control”, John Wiley and Sons, January 2016
7. “Dynamic Guidance of Gliders in Planetary Atmospheres”, Rui Dilão

and Joao Fonseca, Journal of Aerospace Engineering, April 2015
8. “Dynamic guidance of orbiter gliders: Alignment, final approach and

landing”, Rui Dilão and Joao Fonseca, under peer revision at CEAS
Space Journal in 2018.

9. “Dynamic Modelling of Differential-Drive Mobile Robots using
Lagrange and Newton-Euler Methodologies: A Unified Framework”,
Rached Dhaouadi and Ahmad Abu Hatab, Advances in Robotics &
Automation, June 2013

Arduino command

W (rad Hz)

https://drive.google.com/open?id=1tYahK1XoO-8VFFP2wF5T4Tc8tDGrqXhP
https://drive.google.com/open?id=1tYahK1XoO-8VFFP2wF5T4Tc8tDGrqXhP
https://drive.google.com/open?id=1tYahK1XoO-8VFFP2wF5T4Tc8tDGrqXhP

