
Field Scale Autonomy for Vineyards

David Robinson, Harikrishnan Suresh, Matt Swenson, Rahul Ramakrishnan, Vivek Ramaswamy
Advisor: George Kantor

Abstract— In this paper, we present an architecture for an
autonomous mobile platform for the purposes of navigation
within a vineyard. Our system uses on-board sensors to
perform localization, perceive non-traversable obstacles in the
environment, as well as the target vineyard row to enter. It
then uses this information to generate and execute a simple
trajectory towards a local goal point, while avoiding static and
dynamic obstacles.

I. INTRODUCTION

A. Motivation

This project prescribes the development of an autonomy
architecture for the purpose of navigating a wheeled vehicle
safely through a vineyard. The vehicle acts as a platform for
an autonomous pruning system, the development of which
is motivated by the challenge of the labor intensive task of
vineyard pruning in an economic climate where labor costs
are high and workers are scarce.

Previous work on the vehicle has involved designing a
system for navigating between vineyard rows, as in Fig. 1.
However, creating an autonomous solution for the mobile
platform to travel between a parking area and a specified
vineyard block remains a pertinent challenge. This task is
critical for a fully functional system as the vehicle will
need to navigate to specific vineyard rows during operation,
and will also need to park in a specified area for storage
when the system is not being used. Performing this task will
require the platform to negotiate less structured terrain than
in the vineyard, and to avoid obstacles which may arise on
the planned trajectory, such as humans who are sharing the
pathways.

Fig. 1: Desired path for robotic system

B. Project Goals

The high-level goals which are required for the system are
as follows:

1) The robot shall travel from a known starting location
to the start of a vineyard row

2) The robot will avoid static and dynamic obstacles

In order to simulate the target environment of a vineyard
within our limited testing facilities, the team set up two traffic
cones in place of a vine row entrance, and marked them by
attaching April tags in a similar manner to the project’s actual
test site in Erie, PA. A graphical depiction of the project
goals, along with the April tag setup is shown in Fig. 2

Fig. 2: Testing plan for robotic system

C. Robotic Hardware Platform

The hardware platform and the associated sensors for
navigation are outlined in Fig. 3. The system is a re-purposed
CMU robotic platform named Cave Crawler, which was used
to create maps of underground mines. The upper section
of the system is dedicated to the vine imaging system and
vineyard pruning manipulator. The vehicle can be controlled
with a manual controller, or overridden with a digital input
from an bluetooth Arduino configuration.

D. Key Challenges

There are a number of key challenges associated with
realizing this autonomous system. One of the most pertinent
of these is related to the nature of the platform and sensors
which we are working with; the platform is dated and as
such, interfacing with its extant suite of hardware will be
difficult. Also, there is a large number of available sensors for
use, and each of these will require interfacing and calibration,
which the team anticipates will be a time-consuming task.
Another key challenge that we anticipate is the low level of



Fig. 3: Robotic platform

global accuracy for the GPS which we are using. In order
to address this issue, we are planning to use April Tags
for more accurate local planning once the goal destination
becomes closer. Also, for our stretch goal of starting the
autonomous navigation path inside a parking garage, we
anticipate challenges associated with localization accuracy
for the robot when it is indoors or close to buildings.

II. SYSTEM ARCHITECTURE

An overview of the system architecture is depicted in Fig.
4. and is then described.

Fig. 4: System Architecture

A. Localization

This subsystem is responsible for actively localizing the
robot, so that the position of the robot with respect to the
world is known at all times, and this is a very important
step towards making the system autonomous. The input to
this system are the sensor readings from odometry, IMU and
GPS. The odometry provides both the linear and angular
velocity v and ω. The IMU gives roll ψ pitch θ and
yaw Ψ as an output and the GPS provides latitude and
longitude information. The sensor readings from IMU and
odometry are then fused using the EKF from the ROS
robot localization package, while the GPS readings are sent
to the global update to get fused x and y coordinates from the
ROS navsat transform node node which is fed to the EKF as
to obtain a final estimate of the robot’s position and heading.

B. Perception

The Perception system takes in sensor readings from a
LIDAR and a RGB camera. The point cloud generated from
the LIDAR is clustered using eigen-clustering algorithm
in the Point Cloud Library, which essentially detects the
moving objects near the robot as an obstacle. The output
from this module is the position of the detected object
clusters. The RGB camera is used for detection of April
Tags so that the robot can safely align itself to the center of
the beginning of a row before performing in-row navigation.

C. Motion Planning and Control

The autonomous navigation software is built using the
ROS Navigation Stack. The planning sub-system takes in the
values from both the localization and perception sub-system
for generating a plan for the robot to move. The x, y and
yaw readings from the localization sub-system and the point
cloud of the moving obstacles are used in the generation
of a cost-map, which essentially populates the environment
with obstacles and the current position of the robot. The
planning sub-system also receives a GPS way-point from
the user which is sent to the goal planner. Afterwards, the
global planner uses the map and the x and y coordinates of
the destination and creates a trajectory. This trajectory is then
sent to the local planner, Timed Elastic Band (TEB), which
essentially takes in this trajectory and converts it into the
command velocity. In the final stage, the command velocity
is sent to the low-level controller which is responsible for
moving the robot to the required destination.

III. SYSTEM DESCRIPTION

A. Hardware Interfacing

The process of obtaining odometry information from
the motor drivers and wheel encoders involved significant
hardware interfacing. A custom D-Sub connector was made
which ported the appropriate connections from the Encoder
Equivalent Output of the Kollmorgen Servostar motor driver
to an Arduino. The encoder signals were interpreted through
the Paul Stoffregen’s Encoder library [1] and were converted
into metric scale velocities. The steering angle was obtained
by attaching two connecting wires to the Linear Pot + and
Analog GND terminals of the IDC B8501 Digital Brushless
Analog Position Control module and then using the Arduino
on-board +5V ADC to interpret the steer angle signals.

A UM7 IMU was interfaced via a Sparkfun FTDI ROS
driver breakout board, which allowed direct connection via
USB to obtain IMU sensor data in a sensor msgs/Imu format
using ros serial. A housing was then created to securely
contain the sensor related electronics, as in Fig. 6.

B. Localization Subsystem

The localization subsystem uses wheel odometry for the
forward velocity and heading velocity, an IMU for yaw
velocity and a GPS for global x,y position corrections. The
raw wheel odometry is received as a step pulse which
is converted to a velocity and the values were calibrated



Fig. 5: Odometry data acquisition

Fig. 6: IMU, Arduino and Velodyne housing

by driving the vehicle a known distance and adjusting a
scaling factor in order to achieve the appropriate distance
for an integrated trajectory. The steering angle is received
as a raw ADC signal which was then calibrated to steering
angles by gathering a dataset of wheel angles and voltage
values and performing a linear regression fit. The calibrated
odometry is converted to a forwards velocity and steering
angle through the 4-wheel steer motion model in Fig. 7 and
through Equations 1, 2 and 3.

vt = (vleft,t + vright,t)/2 (1)

O =
L

2
× (tan(δ1,t) + tan(δ2,t)) (2)

ωt = atan2(vt,
√
O2 − v2t ) (3)

A known trajectory was then plotted using MATLAB, as
in Fig. 8, and the path accuracy was validated qualitatively
by comparison to a video of the robot motion. The IMU
and odometry data have been successfully integrated into
the robot localization EKF package in ROS to produce a
local EKF.

A U-Blox Precise-Point-Positioning GPS unit was sourced
in order for us to obtain global position information, and a
second EKF was created in the same manner with as the first,

Fig. 7: 4-wheel steer
motion model [2]

Fig. 8: Sample trajectory

but with filtered GPS data from the navsat transform node
to create a global estimate of the robot’s position. The
team considered alternative methods for localization which
involved building a map of the environment and localizing
from it, but have chosen the Dual-EKF approach in the
interest of simplicity and scalability.

The most significant challenge associated with localization
was obtaining the odometry sensor data from the robots
motor drivers. This required reading outdated online manuals
and a lot of experimentation with the output signals from
numerous ports, cable making and creating housing for the
final Arduino which runs the ros serial node to publish the
odometry data.

C. Perception Subsystem

Most of the points from the incoming point cloud are
not necessary for developing our costmap and also consume
significant processing time. Hence we considered points
that correspond to obstacles within 5m and 270 degrees of
the field of view of the LIDAR. After filtering the points
based on these conditions, we used euclidean clustering to
associate points to objects and segment them. A clustering
method divides an unorganized point cloud into smaller
parts so that the overall processing time significantly reduced.

A simple data clustering approach which uses a Euclidean
distance metric was implemented by making use of a 3D
grid subdivision of space using fixed width boxes, or
more generally, an octree data structure. This particular
representation is very fast to build and is useful for situations
where either a volumetric representation of the occupied
space is needed, or the data in each resultant 3D box (or
octree leaf) can be approximated with a different structure.
In a more general sense however, we made use of nearest
neighbors and implemented a clustering technique that is
essentially similar to a flood-fill algorithm. Fig. 9a shows
the raw velodyne data containing all the points whereas Fig.
9b shows the filtered and clustered points that is required
for building costmaps.

April tags are used for goal sensing. Once the robot
reaches the rows of the vineyard from its start location, April
tags attached to start of the vineyard rows are used to center



(a) Raw velodyne data (b) After clustering

Fig. 9: Euclidean clustering results

the robot between the vineyard rows. The current algorithm
identifies the two April tags and finds the transform for the
mid-point between them. These transforms are to be given
to the robot as way-points towards the goal.The detection
of April tags is done using the ros-apriltags package and
a point grey chameleon camera which is interfaced through
the pointgrey camera driver ROS package. The transforms
for each April tags are obtained by subscribing to the
detections topic from the ROS package. These transforms
are manipulated to find the mid-point between the two April
tags and find the corresponding transform with respect to the
robot. Fig. 10 shows the results of initial April tag detections
using the April tags ROS package.

Fig. 10: Indoor April tag detection test results

D. Motion Planning and Control Subsystem

1) Costmap generation: The ROS navigation stack con-
tains a global and local costmap. We started the global
costmap with an empty space (no prior occupancy grid map)
since we wanted our robot to adapt to new environments. The
local costmap was then built incrementally as the robot’s sen-
sors discovered new regions of the environment, and updated
to the global costmap. The output of the LIDAR perception
module was used to discover the traversable region free of
obstacles and build a local costmap. The segmented point
cloud was seen to contain significantly lower noise thereby
enabling generation of clean costmaps. All the obstacles were
given an inflation radius of 0.1m to account for factor of
safety while the robot navigates around them. The robot was
assumed to be circular with a footprint padding of 0.1 given

for safety. Fig. 11 shows the costmap generation using the
segmented point cloud.

Fig. 11: Costmap generation results

2) Global Planning: Using the global costmap, the
global planner generates path for the robot from the start
position to the specified goal position in order to avoid
obstacles. As the global costmap updates, the global planner
re-plans the path to ensure there are no collisions with the
obstacles.

For our project, we started by using a custom global
planner written using the Open Motion Planning Library
framework [2]. RRT? was chosen as the global planner
since it generates an optimal path over time. This planner
was added as a library, which the move base package of
the navigation stack calls to generate the path. The collision
checking is performed by calling the updated global costmap
and comparing the footprint of the robot with the location
of the obstacle to calculate a footprint cost. A potential
collision would result in a negative footprint cost thereby
avoiding that location in the global plan. One thing to note
is that we did not consider the kinematic constraints of the
robot for the global planner, since the local planner was
written to give velocity commands based on the global plan
respecting the constraints. Fig. 12 shows the output of the
RRT? planner in RViz, with the global plan in green.

Fig. 12: RRT? output

We tested our system with the default global planner of
the navigation stack that used a discrete search algorithm,
navfn, as the global path planner. The navfn planner



provides a fast interpolated navigation function that can
be used to create plans for a mobile base. The planner
assumes a circular robot and operates on a costmap to find
a minimum cost plan from a start point to an end point in
a grid. The navigation function is computed with Dijkstra’s
algorithm. Fig. 13 shows the output of default planner in
Rviz.

Fig. 13: navfn output

3) Local Planning: The robot uses TEB local planner
[3] to generate Ackermann-drive feasible paths irrespective
of the feasibility of the global plan. TEB performs dynamic
optimization of over a dozen different control parameters,
which required a significant tuning period to achieve proper
performance on the robot. Figs. 12 and 13 contain the
output of the TEB planner displayed in pink.

4) Control: The original CaveCrawler platform was
designed to operate autonomously using hardware that has
been since removed from the robot, or via a USB joystick.
The other teams working on the robot have adapted the
USB interface into a platform that (tenuously) supports
commands sent via ROS. Control velocities received by a
ROS node are sent over a ros serial node to an Arduino,
which communicates via XBee radio to another Arduino
connected to the original USB connection.

The remaining control system on the robot translates
forward and rotational velocity commands into forward
movement and wheel angles, so it was not necessary to
transform the output of the TEB planner into a form more
closely related to the double-ackermann drive the robot uses.

IV. SYSTEM EVALUATION

In this section we will discuss how both the sub-system
components as well as the system as a whole performed. We
will describe what we have achieved through the project and
highlight limitations and future work.

A. Subsystem-Level Evaluation

The Local EKF performed well, as the IMU and wheel
odometry data was relatively noise free and accurate.
However, when we attempted to integrate the GPS with
the global EKF, there were some issue with the noise in
the GPS signal. Given the physical constraints of the robot
and the roads leading from NSH, the only feasible outdoor
testing environment is the asphalt area directly outside of the
Field Robotics Center. We tested the GPS unit in the CMU
Cut, as in Fig. 14, a wide open space with good satellite
visibility, and obtained a mean covariance for Latitude and
Longitude of 1.04m. A similar test was performed outside
of the FRC and it gave a mean covariance of 3.42m.

Fig. 14: GPS testing results

The algorithm for filtering and clustering was tested using
a bag file recorded using a Clearpath Husky. The input point
cloud at each time-step contained around 23,000-40,000
points including outliers, points corresponding to obstacles
and noise. After filtering with our algorithm, the points
corresponding to obstacles required for developing the
costmap reduced significantly to 5,000-8,000 points, thus
decreasing the processing time from 36-43 ms to 14-19 ms.
This makes the update of obstacles in the costmap much
faster and closer to real-time. Fig. 14 shows the testing
results obtained using the bag file recorded from the Husky
robot.

(a) Raw velodyne data (b) After clustering

Fig. 15: Euclidean clustering evaluation

Testing of the April Tag perception system was performed
independently of the robot and was demonstrably able to
accurately determine the center-point of the two tags. The
system was validated by performing tests both in an indoor
and outdoor environment.



The costmaps and planner were tested first with simulated
data and then the actual robot. The costmaps were initially
generated using the raw point cloud data which resulted
in noisy sensor readings being treated as obstacles. This
was fixed by feeding only the segmented and clustered
point cloud for costmap generation. This results in a
clean costmap containing inflations only at the obstacles.
In addition, the point cloud was converted to a laser
scan in the plane of the LIDAR before feeding it as
into the costmap, because the point cloud source was seen
to cause slow clearing of the costmap for dynamic obstacles.

Regarding the custom global planner, we faced many
challenges since it was sometimes producing plans which
would give collisions with obstacles. We spent a significant
amount of time attempting to debug the issue, and finally
arrived at the conclusion that there is some issue with the
way the costmap is being interpreted by the planner. The
planner identifies the obstacles at a certain offset from
the actual location in the costmap. As such, the planner
generates the path even when an obstacle is given as the
goal but causes collision warnings when a slightly offset
location is given. The custom planner is not robust enough
and was not deployed on the final robot. Fig. 16 shows
some results of the RRT? planner. The default planner
proved to be robust enough and the final test results are
obtained using it in the navigation stack.

Fig. 16: failed RRT? output

Local planning, after calibration, performed relatively
well. The TEB Local Planner reliably generated feasible
paths and demonstrated very little of the frequent small-
order rocking common in other implementations of TEB.
However, there was a notable tendency for TEB to attempt
to switch between multiple paths around smaller obstacles.
In practice, hysteresis in the physical system prevented TEB
from actually switching between the two paths.

B. System-Level Evaluation

The full system evaluation was conducted in a predefined
environment outside the Field Robotics Center. The robot

Fig. 17: Depiction of the integrated cost-map, global, and
local planners.

was made to move towards the local goal position that was
between two cones containing the April tags to simulate
the ultimate navigation goal. The robot was assessed over
four direct tests out of which it performed the autonomous
navigation successfully three times. The system was also
assessed in response to a static obstacle, a trash bin, and
was able to negotiate the obstacle two out of four times,
and never collided with the object. Finally, the system was
tested with a dynamic obstacle, a moving trash bin, and was
able to stop and re-plan it’s trajectory without colliding with
the object. However, in the case of the dynamic obstacle,
the robot was unable to reach its goal.

We encountered significant issues with the costmap and
rover model inflation, causing obstacles extremely close to
the rover to fall off the costmap and cease being planned
around. In combination with the large turning radius of
the rover, this resulted in several tests being aborted just
before the robot hit anything. In addition to the large turning
radius, steering locking was a ubiquitous problem, and the
motor reset function used to clear the steering-lock often
disrupted planning, slowing the system down and reducing
the quality of results. The April tag goal detection was
performed separately due to software compatibility issues
during integration.

C. Major Limitations

The current performance of the system is severely limited
by battery life. The unpredictable nature of the steer locking
problem means it is unlikely the system as it is would be
able to perform truly autonomously. In addition, obstacle
detection is performed using only a 2D slice of the full
Velodyne data. Because of this, the system only detects
obstacles approximately 1.5m off of the ground plane, which
is insufficient for a wide variety of commonly encountered
obstacles. The lack of full GPS integration and testing means
we are unsure of how the robot performs over large distances.

D. Future Work

The following are the things which we plan to carry out
in the future in order to capture all of the desired system
functionality and to make it more robust.



Fig. 18: Robot moving around static obstacles

Fig. 19: Rviz output for robot following plan

• Expand the obstacle detection algorithm to be able to
use the entire Velodyne point cloud.

• Perform ground plane fitting with the Velodyne data to
improve planning and obstacle detection performance.

• Perform path shortening on the RRT planner’s output
paths.

• Integrate the global EKF for GPS way-point following
capability.

• Integrate the April Tag to set the goal in the local
planning frame.

• Replace and possibly upgrade the batteries used to
power the robot.

A video of the robot in operation can be found at https:
//youtu.be/KkF2rET7Z3c, and the project code can
be found at https://github.com/harjatinsingh/
CaveCrawler/tree/global_planning

REFERENCES

[1] Encoder Library. (n.d.). Retrieved from https://www.pjrc.
com/teensy/td_libs_Encoder.html

[2] Shamah, B. (1999). Experimental Comparison of Skid Steering vs.
Explicit Steering for Wheeled Mobile Robot M. Sc.

[3] Wiki.ros.org. (2018). teb local planner - ROS Wiki. [online] http:
//wiki.ros.org\/teb_local_planner

[4] Ioan A. ucan, Mark Moll, Lydia E. Kavraki, The Open Motion
Planning Library, IEEE Robotics & Automation Magazine,
19(4):7282, December 2012. http://ompl.kavrakilab.org,
https://ompl.kavrakilab.org/classompl_1_
1geometric_1_1RRTstar.html#details

https://youtu.be/KkF2rET7Z3c
https://youtu.be/KkF2rET7Z3c
https://github.com/harjatinsingh/CaveCrawler/tree/global_planning
https://github.com/harjatinsingh/CaveCrawler/tree/global_planning
https://www.pjrc.com/teensy/td_libs_Encoder.html
https://www.pjrc.com/teensy/td_libs_Encoder.html
http://wiki.ros.org\/teb_ local_planner
http://wiki.ros.org\/teb_ local_planner
http://ompl.kavrakilab.org
https://ompl.kavrakilab.org/classompl_1_1geometric_1_1RRTstar.html#details
https://ompl.kavrakilab.org/classompl_1_1geometric_1_1RRTstar.html#details

	INTRODUCTION
	Motivation
	Project Goals
	Robotic Hardware Platform
	Key Challenges

	SYSTEM ARCHITECTURE
	Localization
	Perception
	Motion Planning and Control

	SYSTEM DESCRIPTION
	Hardware Interfacing
	Localization Subsystem
	Perception Subsystem
	Motion Planning and Control Subsystem
	Costmap generation
	Global Planning
	Local Planning
	Control


	SYSTEM EVALUATION
	Subsystem-Level Evaluation
	System-Level Evaluation
	Major Limitations
	Future Work

	References

