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Abstract— This paper provides an overview of our
project developing a software system for autonomous
navigation and obstacle avoidance for a wheeled mobile
robot around the Carnegie Mellon campus. The main
software subsystems consist of State Estimation and
Navigation, a Global Planner, and Perception and Local
Planning. The robot hardware used is the Robotanist,
a four wheeled mobile robot developed at the Field
Robotics Center.

I. INTRODUCTION

Autonomous navigation is an area of much tech-
nological development in the recent years, with self-
driving cars occupying much of the development. How-
ever, less emphasis has been put on developing robust
navigation of a wheeled, ground based robot in an
environment with a high degree of unpredictable foot
traffic. In this project, we develop a software and per-
ception system to effectively navigate within Carnegie
Mellon University, with point to point navigation and
obstacle avoidance. Work in this area opens up more
possibilities for the application of robots such as au-
tonomous delivery systems. The platform that we use
for developing the software system is the Robotanist[1],
developed by Tim Mueller-Sim at CMU as part of a
Advanced Research Projects Agency Energy project
supervised by George Kantor. It is a 4-wheeled robot
with skid-steer control and multiple sensors available
for perception and navigation.

Each of the 4 wheels are attached to independently
controlled motors with Hebi Modules, allowing ac-
cess to wheel odometry through precise encoders and
individual IMUs. The robot itself has state position
estimates from a separate, more accurate IMU as well
as a GPS module (non-RTK version). For perception,
the Robotanist has mounted to the front of the robot a
SICK Time of Flight Camera, which creates a point
cloud in the direction of robot travel. Additionally,
the robot has a Carnegie Robotics MultiSense Stereo
Camera, which creates a point cloud at a higher height
and wider field of view than the SICK ToF camera.
These two sensors are used in the obstacle detection

Fig. 1.

The Robotanist in the wild, navigating around farmland

and costmap generation, described in more detail in a
later section.

The key challenges involved in building such as
system are threefold: The most basic one is interfacing
with an existing setup of which we have limited famil-
iarity with. The next two related to the actual system
itself. Because we do not have an RTK GPS, the local-
ization of the robot in our map will be challenging to do
accurately. Additionally, building a proper costmap and
planning around a combination of dynamic and static
obstacles will be challenging given the unpredictable
environment of CMU.

II. SYSTEM ARCHITECTURE

As seen in Figure 2, there are three main software
subsystems that we are creating as a part of this project:
State Estimation, Global Planner, and Perception/Local
Planner. The trajectory execution and motion is well
supported by the robot platform, so we do not need to
focus on this for the scope of the project.
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Fig. 2. Cyberphysical Architecture of our software system running
on the Robotanist

The state estimation consists of fusing the odometry
data from each of the Hebi Wheel modules (which
have quadrature encoders and IMUs) with the Robot’s
IMU and GPS receiver. This gives a more accurate
pose estimate for the robot for use in the Global and
Local Planner. This fusion of the state data is done
with an Extended Kalman Filter, based off of the
Robot Localization package in ROS. There is some pre-
exisiting code to relate all the frames in the robot, but
we have to modify both those frames and the Robot
Localization package in order to tailor the output of
the EKF for our needs. Ultimately the State Estimation
subsystem will output the current robot pose for use in
the Global and Local Planners.

The Global Planner consists of an input of the
current robot position, and a user defined end goal. This
subsystem then computes a path taking advantage of the
Google Maps API to generate a set of waypoints for
the robot to follow. This only needs to be done once at
the beginning of the robot’s trip. These waypoints are
then sent to the local planner one by one until the goal
is reached.

The Local Planner is divided up into two parts:
Perception and Trajectory generation. The data from the
the SICK time of flight camera and used to generate a
three dimensional point cloud. The raw point cloud has
ground hits and some inherent noise which is removed
using filters from PCL library. The filtered data is
then published as ROS laserscan message which when
combined with the robot’s pose from the State Esti-
mation subsystem, forms a two dimensional obstacle
occupancy map based off of the Costmap 2D ROS

package.

We also developed custom code for classifying
the images from multisense camera into road i.e.
traversable and “not road”, i.e. not traversable by the
robot. This image was then projected onto the ground.
We publish laser scan data based on this projected
image. This module has not been integrated into the
costmap package in the interest of time.

The generated costmap is then used by the Local
Planner to compute a trajectory in order to follow
the waypoints from the Global Planner while at the
same time locally avoiding obstacles in the map. The
end output is a trajectory that is sent to the motor
controllers. We are using TEB local planner for this
purpose.

As mentioned above, we used off-the-shelf software
packages and libraries for some of the sub-systems.
These code were not plug and play and but took
meticulous tuning of parameters which is also described
in the following sections.

III. SYSTEM DEVELOPMENT

Each of the sub-systems are now described in detail.

A. State Estimation

We have implemented an instance of an Extended
Kalman Filter, or the non-linear version of the stan-
dard Kalman Filter, using the ROS Robot Localization
package. Figure 3 show the locus of the wheel encoder
odometry points of our system. In this test circuit, we
ended our path at the same place we started our robot
at, closing the loop. However, one can see that the
odometry propogated position at the end does not match
the beginning, thus the need for a Kalman Filter.

Fig. 3. Odometry data recorded from a test run with the Robotanist



We implemented a Dual EKF from the robot local-
ization package, first fusing the wheel odometry with
the robot’s IMU and then combining that with a fusion
of the wheel odometry and the GPS measurement. This
architecture sets up a local EKF and a global EKF
respectively, with different uncertainties associated with
each. A preliminary result from the EKF output can be
seen in Figure.

odom/co.rse_gps

Fig. 4. Output of the Extended Kalman Filter (blue) along with
the GPS (red)

One of the big challenges we have faced for the
State Estimation is an extremely erratic GPS signal.
We included a Mahalanobis distance gate to filter out
these jumps. Additionally, tuning of the parameters in
the filter has proven difficult. We found that increasing
the uncertainty of the velocity of our robot improved
performance, but this is still a work in progress in order
to optimize the output of the filter.

We observed that even though we set the parameter
in the EKF to remove gravitational-acceleration from
the IMU to true, the base link was constantly drifting
away even when the robot was absolutely stationary.
Hence we set a relative parameter to true in order to
overcome this issue.

B. Global Planner

The Global Planner in the Tartan Bot utilizes the
Google Maps API for getting the way-points. As an
input, it takes in the start position of Tartan Bot and,
from the user, takes in the end position. All the way
points are referenced relatively from the start position
of the robot, and hence, the start position of the robot

becomes the origin of the global frame and, also, such
that the base link coincides with the global frame.

The ROS Navigation Stack offers a move_base action
server which can be issued commands through an
action client. The action client, we made, is responsible
for querying the way-points to the move_base action
server and is a node which listens to the pathPublisher
node, and in turn, sends a sequence of way-points to
Tartan Bot. The pathPublisher node is also responsible
for converting the latitude and longitudes to East North
Up (ENU) coordinates. A consequent way-point is only
sent to the server once the current way-point has been
reached. The message type of the way-points is geom-
etry_msgs/Pose. Figure 6 is a schematic representation
of the current Global Planner.

The orientation target of the way-point is set such
that the robot gets aligned to the vector from that way-
point to the next way-point.

odometry source iou L = localplanner =
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Fig. 5. Overview of Global Planner architecture
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Fig. 6. ROS Architecture of the Global Planner

C. Perception

The robot has multiple perception sensors which
were evaluated for our application.

1. MultiSense S7 stereo camera: The sensor provides
instantaneous vertical and horizontal fields of view
(FOV) along with color information for every range
point found. It publishes a point cloud message which
can be used for obstacle detection. Figure 7 shows
pedestrian detected in the received point cloud. This
point cloud published by multisense was found to be
very dense and could only be updated once every 3



Fig. 7. MultiSense stereo camera seeing a pedestrian

seconds. Since this rate of update is not acceptable we
decided not to use point cloud from this sensor. The
sensor also publishes raw images from both the cameras
which were found to be good enough for the purpose
of road detection.

2. Quanergy M8 LIDAR: This sensor has 8 lasers
with 360 degree field of view and it generates 420,000
points per second. We tested this sensor and found
it to be noisy with a lot of distortion in the point
cloud data. Also, the sensor has been mounted with
a downward tilt which limits its field of view in the
forward direction. Since we were not allowed to do
any mechanical changes to the robot, we decided to
not use this sensor for our purpose. Figure 8 shows the
data received from Quanergy LIDAR.

3. Sick Visionary-T time-of-flight (TOF) LIDAR:
This sensor records up to 50 3D images per second
and generates distance values of 144 x 176 pixels per
recording. It also published point cloud data. Figure 9
shows raw point cloud from this sensor.

For navigation two tasks are required which are
described now:

e Obstacle detection: For obstacle detection we are
processing the raw point clouds received from
SICK sensor using filters from Point Cloud library.
The process is described in the Figure 10.

— Down-sampling: Point Clouds are inherently
rich sources of information from the environ-
ment. This leads to the issue of noise and
other bogus information which is not required.
Hence, we down sample the voxel points to
obtain accurate obstacle planes (and not false

Fig. 8. Laser Scan from the Quanergy LIDAR

Fig. 9. SICK time of flight camera seeing a pedestrian

obstacles) for generating a cost map.
Statistical outlier removal: Despite reducing
the density of points in the point cloud from
the raw sensor, chances are that some points
which dont represent a plane still creep in
from the sensor into the obstacle cost map.
The statistical outlier removes these anoma-
lies and ensures that only points which can
be clustered on a whole to form a plane are
only used.

— Ground plane filtering: This is achieved using
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Fig. 10. Filtering the point cloud from SICK Tof



a pass through filter from the pcl library.
The filter simply crops the points at a height
threshold along the Y-axis of the sensor. This
means that we only consider data points above
a certain Y-value(threshold about the road
data points).

Fig. 11. Filtered output of the SICK LIDAR

— Point Cloud to Laser Scan: We were origi-
nally using the point cloud data directly from
the SICK sensor to generate the costmap.
This was good for registering the obstacles
but made it really difficult to clear obstacles
from the voxel grid of the costmap. Same
obstacles got registered in different layers of
the costmap while the obstacle clearing was
done only in one layer. To tackle this, we
converted the point cloud data to 2D laser
scan data using ROS package pointcloud-to-
laserscan.

e Road Detection: The images received from mul-

tisense camera are used to identify traversable

regions. For this purpose, we are using colour
thresholding to segment out the gray regions from
the image. The characteristics of the noise in the
image closely resembled salt and pepper noise.

Therefore a median filter is used after obtaining

the binary mask. A top view of the resultant image

is then taken so that we get the projected road.

We finally obtain a binary mask of Os and 1s rep-

resenting non-traversable and traversable regions

respectively. This mask is then used to publish

a laser scan message which can be used with

costmap 2d ROS package. In the interest of time,
we havent integrated this module with our overall
navigation pipeline. A final result of this is shown
in Figure 12.
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Fig. 12. Binary road classifier derived from SICK images

The SICK Time of Flight Sensor (SICK Tof) is the
primary sensor that is used for making the cost map.
During the mid semester report we were using a Y-axis
pass through filter, accompanied by a statistical outlier
filter, to filter the noise from detecting the road. Doing
this we observed that the publishing rate from the final
output of the filter was dramatically slower than that
from the sensor itself. Given this, the update loop in
the cost map was throwing out warnings stating that it
was using old data to update its cost map. This, in turn,
led to the problem of jerky motion while executing the
plan output from the planner. In order to avoid this
issue, we instead incorporated a voxel grid filter and
stacked the outlier and pass through filter on top of
it (in the same sequence as stated). Figure 10 shows
the final filtering sequence on the raw point cloud data
from SICK Tof. The original output is seen in Figure
9.

D. Local Planner

The local planning module receives the immediate
goals from global planner in Cartesian coordinates
and orientation and uses them to plan a feasible path
for the robot accounting surrounding obstacles. The
generated path is in the form of velocity linear and
angular velocity commands published in the form of
twist message.

There are two separate components which are run
concurrently in order to plan a path:

1) Costmap generation: The laser scan published
after filtering the SICK point cloud is used to
update the cost map. We are using costmap_2d
ROS package for this purpose. The obstacles are
inflated based on inflation radius parameter and
are projected on a rolling occupancy grid map
where each cell is assigned a cost. The cost



assigned to an obstacle depends on the robot
footprint and the inflation radius parameter set.
The costs are divided into different levels based
on possibility of collision depending upon robot
position relative to the obstacle. These levels are
lethal, inscribed, circumscribed, free-space and
unknown.

Costmap 2d package has a lot of parameters
which affect the accuracy and rate at which
costmap is updated. Following parameters were
tuned to generate the right behavior from the
local planner:

a) Obstacle range: This was set equal to the
range of sick sensor.

b) Raytrace range: This was set slightly higher
than the max range of sick sensor so that
obstacles can be cleared effectively when
they are no longer in the field of view.

¢) Inflation radius: It was reduced from 0.5 to
0.2. This was done to reduce the radius of
turn when the robot sees an obstacle.

d) Obstacle persistence: It was set to 0 as we
want the obstacle to get cleared as soon as
it is out of the field of view of the sensor.
This was required as are operating in an
environment with lot of pedestrians. If we
keep the obstacle for some time, the robot
will have a tough time planning around
them.

2) Planning: For local planning we were initially

using base_local planner ROS package. It
is based on trajectory rollout and dynamic win-
dow approach which is a common approach for
local control. This planner worked well with
static obstacles but gave problems for dynamic
obstacles. Specifically the planning generation
was slow which caused the robot motion to be
jerky.
We decided to switch to Time Elastic Band (TEB)
local planner which provides fast re-planning
and generates smoother trajectories. This plan-
ner locally optimizes the robot’s trajectory with
respect to trajectory execution time, separation
from obstacles and compliance with kinodynamic
constraints at runtime.
Following parameters were tuned to generate the
desired obstacle avoidance behavior from the
robot:
a) dt ref: Desired temporal resolution of the
trajectory. It was increased from 0.3 to 0.5

to increase the planning speed. This forces
the planner to take bigger steps while sim-
ulating the trajectory.

b) dt hysteresis: This is set to 10% of det ref.
So it was set to 0.05.

¢) max vel x: Max velocity in x direction was
set to 1.0 m/s.

d) max vel x backwards: Max backward veloc-
ity in x direction. This was set to 0.2 m/s
as we don’t want the bot to move fast in
backward direction as there are no sensors
facing backwards.

e) max vel theta: Max turn rate was set to 1
radian per second.

f) acc lim x: Max acceleration in x direction
was set to 1 m/s2.

g) acc lim theta: Max turn acceleration was set
to 1 radian per sec2.

Figure 13 shows the path generated by TEB local
planner around the obstacle.

Fig. 13. Results of the costmap and planner that was implemented
in our navigation stack

A big challenge here is the robot is skid steer (non-
holonomic). Those constraints, in addition to the high
wheel base to track-width ratio, make turning in place
difficult, let alone moving sideways. Factoring in those
limitations to the trajectory planning makes finding a
solution for the local planner more difficult. Moreover,
we anticipate autonomous navigation around CMU to
be tough, given the large number of pedestrians that
could get in the way. This presents a challenge for the
costmap update and planning. We are considering mov-
ing to a Time Elastic Band (TEB) planner that allows
fast re-planning in the event of dynamic obstacles.



IV. EVALUATION AND RESULTS

As we were developing the system, we evaluated
each subsystem as we went along to verify individual
correctness before integrating and evaluating the system
as a whole. One of our first subsystems to get validated
was of EKF module testing how well the state estima-
tion would work. We did this by taking the robot out
of a predefined track looping around the plaza between
Newell-Simon and Smith Halls and completed one full
loop with loop closure. Based on the map of the known
trajectory and the error from the loop closure, we were
able to meet our standard of localization within 1 meter
over the course of the entire trajectory.

Next, we verified that our costmap was rendering
correctly by checking what the output was from a
recorded bag file in which we placed obstacles at
specific points in the route. We tested that the costmap
was working correctly when we saw that the obstacles
would be generated in the costmap at the appropriate
time in the bag file data. We validated this functionality
by doing a live test of the costmap with a dynamic
obstacle by having one of us walk in front of the robot
while it was driving forward. In this test we were able
to meet our requirement of the obstacle appearing in the
costmap within 1 second, and clearing correctly within
1 second, as well as placing the obstacle to within 1m
accuracy within the map by checking the output of the
map vs what we measured and observed in the real
world.

Continuing with our subsystem testing, we verified
the output of the global planning by setting waypoints
for the robot to drive to (without obstacles) and check-
ing to see how closely the robot would follow that. The
skid-steer of the robot made it difficult to plan directly
to the waypoint, so the robot had to plan multiple steps
to achieve its goal. once it was verified that the robot
could drive to each of these waypoints and get to the
desired pose to within 1 m translational position, we
tested the system local planner by placing an obstacle
in front of the robot and plotting the planned trajectory
in rViz to verify that the output of the planner was
reasonable to achieve the desired goal configuration.

To evaluate the entire system, we structured a test
as a combination of our subsystem tests by setting up
a number of waypoints for the robot to plan to, and
a couple of static obstacles (people standing in place
at predefined positions). We then had the robot drive
along the planned route, navigating around the static
obstacles as it progressed towards the end goal. A setup
of this test is shown in Figure 14. We added a couple

Fig. 14. Validating the full system in a live test

of random dynamic obstacles when we walked in front
of the robot at random times during the execution of
the trajectory. Our criteria for success was the robot
needed to navigate to each waypoint accurately within
Im and get to the desired goal without running into
either the static or dynamic obstacles. By the end of
our development, the robot was able to complete several
trials which met these criteria.

V. ORGANIZATION AND REFLECTION ON PROJECT

A. Division of Work

The work was divided based on interest of the indi-
vidual team members. Ritwik was responsible for the
Google maps API integration with the global planner
and developing road detection routing. Danendra was
responsible for generating the 2D costmap from the
SICK time of flight sensor. Karsh was responsible for
state estimation, filtering noise in SICK sensor and
developing the ROS Navigation stacks action client pro-
gram. Nick worked with Karsh on data collection and
state estimation. Shivang worked on the configuring
local planner and integration of all the sub-systems.

B. Time Analysis of Individual Components

Costmap and Local Planner were the two most time
consuming components. For costmap we had to filter
the noise, publish laser scan from the point cloud and
tune a lot of parameters. For local planner we had to
tune parameters which took a lot of time as we had to
run the bot every time to see the effect of the changed
parameter.



C. Key Challenges

This robot is not designed to navigate in a campus
like environment with dynamic obstacles. The robot
cannot turn in place which becomes a problem if you
are in a obstacle rich environment. The sensors were not
configured properly and It took us a lot of time to set
up everything correctly. There was no freedom to move
the sensors which made it difficult to get the desired
configuration of sensors which provides full 360 degree
coverage. SICK sensor is very noisy especially in
daylight scenarios. Even at night there is some fixed
noise which had to be filtered using statistical outlier
removal filter. IMU ROS node kept crashing when
using the bot. We couldnt find the reason for that as
all the wirings were not accessible. Scheduling work
among the team was a major challenge as everyone has
been really busy with the coursework this semester. To
work with the robot GPS reception was required, so we
had to take the robot out every single time.

D. Lessons Learned

Initially we were using the code provided with the
bot. So we gave a good chunk of time to understand
that code only to find that that code is configured
to work in fields which is totally different from our
application. The code had a lot of hard-coded hacks
which were difficult to work with. After struggling with
this we decided to instead work with ROS navigation
stack. In hindsight, We would prefer to not use any
undocumented code. Our project objectives should have
been calibrated according to the time we have to
complete the project and with amount of field testing
required to make stuff work. At times we took a black
box approach to solve certain issues which lead to a
waste of time. In hindsight we could have studied the
ROS packages we were using before trying to tune the
parameters.

If you had to do the project again, what would
you change? We would prefer building our robot or
at-least testing the robot before finalizing the project
plan. We would spend some time on simulation to tune
the navigation parameters instead of directly tuning
everything in field.

VI. CONCLUSIONS

We were able to achieve our goal of developing
software for autonomously navigating a wheeled mo-
bile robot while accomplishing obstacle avoidance. The
system works with static and dynamic obstacles. We
have tested the system outside wean hall and tried

multiple times to suddenly walk in front of the bot. It
stooped every single time and replanned its path around
the obstacle.

One of the possible improvements could be integrat-
ing the road segmentation as part of costmap generation
to ensure the bot stays within the road boundaries.

APPENDIX

Code is available for public viewing at https://
github.com/tartanBot.

Video is available at https://www.youtube.
com/watch?v=EVAJZjyaTGo.
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