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Abstract

This work involves teaching ground vehicles autonomous navigation policies. The
project consists of two parts: (1) learning to navigate in a simulated environment
using reinforcement learning and (2) transferring the trained model and policy
onto a physical remote controlled ground vehicle. In this report, we propose
an end-to-end deep reinforcement learning (deep Q-network) approach to learn
environmental state-action values in high-dimensional continuous state space and
generate discretized actions to control a vehicle in simulation. After the model and
policy were transferred to a physical ground vehicle, the performance of learned
model and policy were evaluated in an engineered maze environment.

1 Introduction

1.1 Motivations and High-level Goal

In 2010, the national statistics from the National Highway Traffic Safety Administration reported
5,419,000 crashes, 30,296 of which involved fatalities, resulting in 32,999 deaths and 2,239,000
injuries[1]. With the increasing number of motor vehicles in recent years, the number of traffic
accidents is growing. Most of the cases are caused by human factors such as fatigue and inexperienced
driving. With the gradual maturity of deep learning technologies, developing robust and safe self-
driving vehicles becomes tangible.

Approaching autonomous driving in an end-to-end manner has been capturing industrial attentions
in the recent years [2]. With the gradual maturity, standardization, and modularization of machine
learning and deep learning technologies and toolboxes, researchers have explored the applications
of these technologies in self-driving car lane keeping [3] as well as multi-model multi-task control
[4]. Our project is a simplified version of these systems and tries to demonstrate the capability of
reinforcement learning to navigate an autonomous vehicle without human supervision.

It is intriguing to explore end-to-end reinforcement learning in autonomous navigation. The general
goal for this project is to leverage end-to-end deep reinforcement learning to teach ground vehicles
to learn autonomous navigation skills in simulation and transfer the learned model and policy to a
physical remote controlled ground vehicle, which we test in a physical environment.



1.2 Experiment Hardware Platform

The hardware platform used in this project is a 1/10 scaled remote controlled (RC) ground vehicle1,
including mounting assembly and protective bumpers. The ground vehicle chassis model is MST
FXX-D RWD and the mounting assembly is set on top of the RC car, which houses a battery, a Jetson
TX1 single-board computer, a USB hub, an inertial measurement unit (IMU), a Lidar and an on-board
Wi-Fi module. An image of the experiment hardware platform is shown below in figure 1.

Figure 1: the remote controlled ground vehicle as the experiment hardware platform of the project

1.3 Primary Challenges

Some key challenges have been identified during the realization of the autonomous system, as listed
below:

• The assembly of the vehicle. At the beginning, we tried to build the car from scratch
ourselves, but since some of the key components were not ordered on time, we decided
to borrow existing hardware instead. The availability of an off-the-shelf robotic hardware
platform for experiment is an important factor impacting the progress of the project.

• The usage of hardware platform. The vehicle has an on-board Wi-Fi module to communi-
cate with the control computer. We had a difficult time setting up the router and establishing
a link between these two components. In addition, integrating our code into the existing
framework of the RC car also proved to be a challenge.

• The usage of simulator. Before the midterm, we tried the SUMO simulator, but we found
that this simulator is fundamentally a traffic simulator and only supports moving forward or
stopping. Therefore we switch from SUMO to Gazebo so that we can incorporate realistic
physics and steering control into our model.

• Transferring learned policy from simulation to the real world. The primary technical
challenge was figuring out how to transfer the learned policy effectively to the real world.
We approach this challenge by keeping the real world observations as close as possible to the
observations in the simulator. For example, we used a non-reflective cardboard like material
to construct our maze because it provides a very clean laser scanner results. Additionally,
we also tuned the turning angle of the car so it relate closely to the turning angle of the car
in the simulator.

2 System Architecture

The overall system can be divided into three parts:

• The deep reinforcement learning agent (the deep Q-network) controller, which is con-
trols the behavior of the car in both the simulated environment and the physical world.

1Credit to the MRSD’16 Team D
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• The car simulator, which simulates the car dynamics in a virtual environment and provides
us with a suitable environment to train the deep reinforcement learning agent (the deep
Q-network);

• The remote controlled ground vehicle, also known as the RC car, is the physical platform
that hosts the deep reinforcement learning agent allows us to visualize the learned model
and test the policy in the physical world.

The software architecture of the deep reinforcement learning agent controller and the hardware
architecture of the remote controlled ground vehicle will be further discussed in the following
sections.

2.1 Controller Software Architecture

From the software perspective, the drivers that connect the ROS system with the car simulator
and the physical remote controlled ground vehicle are needed. Besides, the core of the software
architecture is an end-to-end deep Q-network controller, which consists a feature extractor that extract
the features from the raw sensor input to reduce state dimension and a deep Q-network that estimates
the state-action values of different actions in specific states.

To better explain our software architecture, a diagram was created to illustrates different components
of the software and the relationships among them, as shown below in figure 2.

Figure 2: the software architecture of the controller system

The deep reinforcement learning agent (the deep Q-network) controller is the core part of the software
architecture. It takes in the Lidar input of either the simulated car in the simulation environment or
the physical remote controlled ground vehicle platform in the physical environment. And it sends
out control output to either the simulated car or the physical vehicle. Within the controller, the raw
data from the sensors first go through a feature extractor, which perform dimension reduction on
the raw sensing input. The implementation of the feature extractor can be an auto-encoder neural
network [5], or just passing the raw sensing input to the next component if the Q-network can actually
handle the raw data. A deep Q-network [6] follows the feature extractor, and takes in a feature space
value as the state and estimates the state-action values associated with each action (discretized in a
continuous action space). An argmax operator is used to select the final action which is then sent to
the actuators to execute, producing an effect on the external environment. We are using a prebuilt
Gazebo simulator environment however we have implemented our own DQN network.

2.2 Simulation Environment

Due to the nature of reinforcement learning, it is highly impractical to perform all the training in
the real world. Instead, it is much more realistic to train in simulation and fine-tune in physical
environment. A simulator provides several benefits that can facilitates the training process: (1) the
simulated environment can be modified and reset conveniently; (2) it is possible to train a models in
parallel; (3) it does not depends on the mechanical components of the hardware platform, which is
important since the vehicle will be crashing constantly during training and requires manual reset.
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For simulator trade study, we have explored and tested different off-the-shelf self-driving car simu-
lators, namely the Simulation of Urban Mobility (SUMO) environment [7], the CARLA Simulator
[8], the OSRF car simulator 2, and Gazebo [9] along with OpenAI Gym [10] extension called
gym-gazebo [11]. The SUMO environment is a multi-agent vehicles simulator, which is suitable for
city-scale traffic applications but is insufficient in simulating detailed vehicle dynamics. CARLA is a
high resolution and realistic simulator incorporating detailed car dynamics and driving environment
settings. However, it is beyond the simulation requirements of our project, and introduces unneces-
sary complexity into the project. With similar reasons to CARLA, the OSRF car simulator is not
considered to be used in this project.

With the above, gym-gazebo is chosen as the simulation environment for the project, because
it provides users with a realistic physics-based simulation of the subject robot and allows easy
integration with existing hardware. It also has a variety of built-in simulated sensors and predefined
robot dynamics, and supports ROS naturally. The similarity of the robot dynamics within the simulator
can be easily transferred to the RC car used as our hardware platform. A pre-built environment that
comes with gym-gazebo was used for the training of our model.

2.3 Ground Vehicle Hardware Architecture

The remote controlled ground vehicle consists of sensing module, on-board computing module,
communication module, power supply module, actuators and chassis, as shown in figure 3 below.

Figure 3: the hardware architecture of the remote controlled ground vehicle

For the sensing module, we are going to take advantage of the Lidar and IMU sensors on the hardware
platform, whose data will flow into the on-board computer for further processing. The hardware
platform is also equipped with a Wi-Fi adapter that connects the ground vehicle and the master
computer the operator uses. The micro-controller also connects to the on-board computer converting
action output to low-level motor signals to drive the vehicle. The power supply is actually a on-board
battery that power all the electronic parts of the vehicle. We have built an RC car however for our
final demo, we are using an existing car from a past team.

3 Implemented Components

3.1 Learning from Simulation

For reinforcement learning, we are using the gym-gazebo simulator, a ROS-based Gazebo simulator
that interfaces with Open AI gym [11]. We are choosing this simulator for several key reasons. First,
we would like to use the ROS architecture as much as possible because most open-source robotic
toolkits and support are on the ROS platform, we would need to interact with a robot that is likely
controlled by ROS, and all of our team members are familiar with ROS. This is in contrast to other
car simulators such as AirSim or Carla which, although more powerful, are harder to setup, require
more computational resources, and do not have Lidar sensor output.

2https://github.com/osrf/car_demo

4

https://github.com/osrf/car_demo


Furthermore, gym-gazebo comes with predefined environments and vehicles that eliminate the
trouble for us to design, configure, and integrate our own vehicles. Specifically, we are currently
using the GazeboCircuit2TurtlebotLidar-v0 environment which is a simple square maze with
walls that is designed for vehicles with planar Lidar’s. In addition, we are currently training with
a Turtlebot vehicle as it is the default vehicle for the simulator and is equipped with a planar Lidar
which is similar to the Hokuyo on the RC car. To limit the scope of the project, we have constrained
the action space to be a one dimensional discrete action space for only the steering. The steering
angle is discretized between -0.5 to 0.5 in 21 steps and the acceleration is set at a constant 0.2.

Recall that our original goal is to simply teach a car to drive itself. We would like our agent to be able
to navigate around without colliding with obstacles. To that extent, we are not imposing any goal or
destination constraint. We do not care where our vehicle goes as long as it is able to keep moving and
avoid obstacles. As a result, we have shaped our rewards as follows: a linearly decreasing reward
from 5 to 0.5 that scales with the absolute value of the steering angle and a -200 reward for a collision.
We want the agent to move forward so we penalize actions that result in circling in place but our
ultimate goal is to avoid collisions so we penalize it heavily for that.

We are currently using a Deep Q Network (DQN) as our architecture. The DQN is a 3 layered
feedforward neural network with 300 units per layer and uses ReLU activation. In DQN, we
approximate the action-value function with a deep neural network Q(S,A). At each step of an
episode, we choose a action At from states S using a policy derived from Q. We observe the next
state S′ and the reward R and we update the weights of the Q-Network:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (1)

In addition, we are using two modifications to the vanilla DQN architecture to improve performance:
experience replay to remove correlation between successive data points and a target network to
evaluate the agent’s actions and stabilize the training [12].

In hindsight, it may have been better to pursue a method such as DDPG[13] that operates directly
over a continuous action space, thus eliminating the need for discretization. However, at the time, we
were more confident in implementing and debugging a DQN and we also did not believe that our
action-space was complex enough for a DDPG to make a big difference.

3.2 Ground Vehicle Assembly

For the ground vehicle, we have assembled the chassis and the necessary electrical components, as
shown below in figure 4a. However, after the midterm, the solid axle plate was still missing which
is essential for the transmission of motor torque to the wheels. The assembling of the experimental
platform has been severely obstruct the progress of the entire project.

(a) assembled chassis (b) adapted borrowed RC car

Figure 4: the initial assembled RC car chassis and the RC car hardware platform borrowed from MRSD’16
Team E after custom adaptation for the requirements of the project

In order to boost the progress, it has been decided to borrow the existing RC car platform from
MRSD’16 Team E and adapt the borrowed platform to the requirements of our project instead. The
adapted borrowed experimental hardware platform is shown in figure 4b. The necessary control
software has been installed on the RC car and the control this platform through Wi-Fi has also been
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addressed. The detailed documentation on MRSD’16 Team E has provided great support for our
project.

4 System Evaluation

A video documenting the performance evaluation of the system is available online3.

4.1 Component Evaluations

4.1.1 Hardware Platform

The performance of the ground vehicle hardware platform is evaluated based on the fidelity of the
steering angle and the accuracy of the laser scanner’s input. To evaluate the fidelity of the steering
angle, we will issue several steering angle commands and measure the actual output vs the angle
commands. The actual output angle should be within 5 degrees of the issued command angle. For the
laser scanner, we will evaluate it empirically by visualizing the laser scan output and comparing the
output to the real environment.

4.1.2 Deep Q Network

The performance of the DQN implementation can be directly evaluated from the learning curve as
shown in section 4.3.2. We evaluated the DQN by checking if it learned the dynamics of the simulated
environment and was able to avoid the walls when navigating. Specifically, our reward for the agent
is a linear scaling of the angle if there is no collision and a flat −200 if there is collision. Based on
this reward structure, we expected the simulated agent to be able to travel mostly in a straight line
but turn to avoid the obstacle walls in the environment. The environment was not assigned with any
higher level goals such as reaching a certain location in the environment, and there was neither any
terminal state aside from being in a collision. Thus, in the optimal case, the environment is not a
finite horizon one and it is expected the agent would be able to navigate forever in this setup.

4.2 Complete System Evaluation

Evaluation of the complete system is comprised of evaluation of the individual subsystems and
the integration of the physical platform with the simulated agent. Specifically, it was expected the
physical RC car could be able to move forward, backward, left and right, while detecting objects in
the environment accurately with a planar Lidar. Furthermore, it shall be able to interact with ROS.
Additionally, we evaluated the DQN based on its ability to avoid detected walls and obstacles.

Together, we evaluated the complete system on a physical track that closely mirrored the virtual track
in the simulation environment. Owing to limitations in available space and material, we were unable
to create a track in the same scale as the simulated environment. However, the agent was trained
with a very simple reward structure and therefore the high-level layout of the track shall not impact
the actual performance. A smaller track with roughly the same width and curves is sufficient for the
evaluation of the complete system.

We evaluated the complete system based on the number of collisions it had with the walls. This
metric is closely related to the reward and the training process.

4.3 Results

4.3.1 Hardware Platform

Steering Angle Evaluation. We evaluated the performance of the ground vehicle steering by
assessing the absolute difference between the measured angle and the issued command angle. The
criterion of this evaluation is that the difference between the two angles shall be within 5 degrees.
It was observed in the evaluation experiment that the difference between the actual angle and the
measured angle is within 2 degrees as shown in figure 5a, which suggested the system has satisfied
the steering performance criterion.

3https://youtu.be/zcsYNvxJ0bQ

6

https://youtu.be/zcsYNvxJ0bQ


Lidar Perception Evaluation. We evaluated the Lidar perception performance by using it to scan
the MRSD Lab in the NSH basement and visualize the output point cloud. The evaluation experiment
suggested this component was successful in outputting a point cloud skeleton which empirically
resembled the outline of the lab, as shown in figure 5b.

(a) steering angle evaluation result (b) Lidar perception evaluation result

Figure 5: evaluation results of the hardware platform, including a graph of the absolute difference between the
measured angle and the issued command for steering angle evaluation and the point cloud resembling the MRSD
Lab outline for Lidar perception evaluation

4.3.2 Deep Q Network

(a) training environment with gym-gazebo (b) learning curve of the DQN

Figure 6: a screenshot of the visualized simulation environment with an agent running inside the simulated
maze and the corresponding learning curve of the deep Q-network of the agent

Figure 6b shows the current training progress of our vehicle in gym-gazebo while Figure 6a shows
the simulator itself. As the plot shows, the training is unstable - in fact, we have seen very different
results from different initialization and seeds of the agent. However, the agent is definitely able to
learn to avoid the obstacles to a noticeable extent. We can see from this link at 150 episodes in the
training process that the agent has been able to approximate the value-function somewhat well.

4.3.3 Complete System

We evaluated the entire system on physical tracks that are engineered with similar parameters to the
simulated environment. Out of 6 trial, with each comprised of a forward and backward pass through
the track, no collision has been observed, though the vehicle sometimes moved closely to a wall. The
success rate was 100%. Videos of the trials are available4.

4.4 Achievements with the System

In this project, we were able to successfully navigate a physical car in a simple constrained environ-
ment using deep reinforcement learning. Our major achievements in this project are (1) training an

4https://drive.google.com/open?id=1ODbB6dA0Co-lAanBEZlR5edjznQKIwFA
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autonomous agent in a simulated environment and (2) effectively transferring that learnt policy onto
a real, physical agent.

First, training an agent using deep reinforcement learning is not simple, even when using a simulator.
Until several years ago, it was believed that modelling an environment as a Markov Decision Process
and learning the Q-value was too unstable in reality. It was not until the introduction of deep neural
networks and experience replay that progress was seen in the field of Deep RL. Through careful
selection of our state input, action-space output, and an appropriate reward function, we were able to
achieve convergence with our system in simulation.

Second, transferring from a simulated to a real environment is also challenging due to the inherent
differences between the two environments. First, we had to ensure that our physical platform was
built to specification and capable of performing the tasks needed. This required careful selection
of components and thorough integration of the entire system. Furthermore, there will always be
differences between a simulated and real environment and we had to address those differences
accordingly. This aspect will be discussed in more detail in Section 4.5.2.

4.5 Main Limitations and Future Work

4.5.1 Deep Q Network

A deep Q network works well for deterministic environments with discrete action spaces but it does
not work well for stochastic environments and continuous action spaces. Unfortunately both of
these environment types are applicable to our project. In real life, stochastic elements can include
dynamic obstacles, wheel slip, and other inconsistencies that are not seen in simulation. In addition,
a car’s steering, acceleration, and braking are all continuous. A DQN may work well for a simple,
constrained environment with only 1 discrete action - as in our case - but it likely will not generalize
to more complex environments. There are many avenues with which we can address this in future
works. First, we can implement policy gradient methods since these operate directly on the policy
and can inherently incorporate stochasticity. As well, we can include a fuller assortment of actions
that would be available to an action car. These include acceleration (gas) and braking controls. Lastly,
we would prefer not to discretize the action space in the future since it quickly leads into the curse of
dimensionality. Instead, methods such as DDPG[13] operate directly over a continuous action-space
and are more suitable to our project.

4.5.2 Differences in real and simulated environment

We encountered some issues when trying to port the agent from the simulated environment into a
real car with real obstacles. First, we were using a different physical vehicle from the vehicle in
simulation. The real vehicle is a 4-wheeled Ackermann drive RC car while the simulated vehicle is a
turtlebot that can turn in place. Clearly the dynamics for these two vehicles are very different. We
didn’t notice any significant issues due to this difference but in the future we would like to remain
consistent from simulation to reality.

Furthermore, the sensors specifications do not match completely. Specifically, the Hokuyo Lidar
on the RC car has 1081 laser beams while the simulated Lidar has 100 beams. We addressed this
problem by simply sampling the beams. In the future, we would increase the capacity of the neural
network in the simulator to match the state input of the actual Lidar.

Lastly, there was a considerable amount of Lidar noise in the real world. We noticed on the rviz
display that there are many artifacts in the laser scans due to metallic surfaces and clutter (see figure
5b). This severely affected the performance of the agent. It is an empirical rule in machine learning to
avoid unseen data. In the future, the Lidar data can be pre-processed by adding noisy measurements
to simulation to make it more realistic.

5 Organization

5.1 Work Division

The team members have been worked collaboratively throughout the entire project under reasonable
workload division. Namely, Ting-Che Lin, Jiahong Outyang and Yang Yang have been primarily
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focused on the hardware assembly, ground vehicle control software. Yuchi Wang and Dicong Qiu
were working on the simulation environment setup and model training. All team members were
involved in the model transfer from the simulator to the physical platform and paperwork.

5.2 Primary Obstruction

The hardware platform was the primary obstruction of the project. The original plan for the project
was to assemble a new ground vehicle hardware platform for experiment, following the design of
an autonomous vehicle project in Carnegie Mellon University. However, due to the insufficient
information about the detailed parts requirements and the process of placing orders for parts, the
new ground vehicle was not able to be completed. Instead, we borrowed an existing ground vehicle
platform from MRSD’16 Team E and changed some parts to adapt the requirements of our project.

5.3 Key Challenges

• The assembly of the vehicle. At the beginning, we tried to build the car from scratch
ourselves, but since some of the key components were not ordered on time, we decided
to borrow existing hardware instead. The availability of an off-the-shelf robotic hardware
platform for experiment is an important factor impacting the progress of the project.

• The usage of hardware platform. The vehicle has an on-board Wi-Fi module to communi-
cate with the control computer. We had a difficult time setting up the router and establishing
a link between these two components. In addition, integrating our code into the existing
framework of the RC car also proved to be a challenge.

• The usage of simulator. Before the midterm, we tried the SUMO simulator, but we found
that this simulator is fundamentally a traffic simulator and only supports moving forward or
stopping. Therefore we switch from SUMO to Gazebo so that we can incorporate realistic
physics and steering control into our model.

• Transferring learned policy from simulation to the real world. The primary technical
challenge was figuring out how to transfer the learned policy effectively to the real world.
We approach this challenge by keeping the real world observations as close as possible to the
observations in the simulator. For example, we used a non-reflective cardboard like material
to construct our maze because it provides a very clean laser scanner results. Additionally,
we also tuned the turning angle of the car so it relate closely to the turning angle of the car
in the simulator.

5.4 Lessons Learned

The primary lesson learned from this project is that we shall have a good planning and schedule for
the entire project, especially when hardware is involved. It has been identified that the hardware
assembly is a primary obstruction of our project, and due to the hardware issue, we were not able to
deliver much better results in more complex environments. If we had organized the hardware parts
ordering and the hardware platform assembly better, we might be able to improve our algorithm and
handle more complicated situations.

Also, it would be great if the course itself can provide pre-assembled and well-tested hardware
platform, so that the students could focus on the core problems, instead of the hardware issues.

If we were to do this project again, we may not be struggling in trying to assemble our own ground
vehicle, but use an existing hardware platform, such as the one we borrowed from MRSD’16 Team E,
so that we can focus more one the actually algorithm design and implementation for ground vehicle
autonomous navigation.
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