

Marble Madness

Final Report

Yanda Huang, Jennifer Isaza, Divya Kulkarni,

Chris Song, Andrew Wong

May 9, 2018

1

1.0 Project Goals:

Figure 1.1 Foam bridges on white board.

The main objective of this project is to detect foam bridges (as shown above in

Figure 1.1) and use Baxter to move these magnetic foam bridges to form a route from
start to end. This route will be created such that when a marble is dropped a
predetermined starting point it will traverse through the bridges and reach its final goal.

This is an important problem because it demonstrates that a robot is able to
understand its environment and effectively place the blocks in a location that is suitable
for a specific task. Our planning is based on a physics simulator, which provides an
alternative to learning-based methods in order to accomplish this task. Although our
project is in the context of a magnetic marble run game, on a higher level it can be
applied to many different tasks and environments that robots might encounter.

We began by choosing a simulation framework to gain understanding of the
planning required for this task. In this simulation environment, we are looking at different
optimizers to use in our final system flow. Our main hardware components include the
Baxter robot, a RealSense D435 camera, and a computer running ROS that
communicates with both Baxter and the camera.

A key challenge is successfully moving Baxter’s arms and the custom grippers to
grip, remove, and place the blocks as planned. Another challenge for autonomous
operation is writing the computer vision (CV) algorithms to detect the blocks on the
whiteboard and transform the image coordinates into real world coordinates with
respect to Baxter’s position.

2

2.0 System Architecture:

Figure 2.1 - System Architecture

As shown above in figure 2.1, there are three subsystems in our system
architecture: vision, optimizer, and Baxter manipulation. Each subsystem’s inputs,
outputs and connections are described in the following section.

2.1 Vision Subsystem
Description: ​This subsystem processes an image of the whiteboard and returns
information about the current configuration. The configuration will need to be adjusted
for the marble to successfully fall from the start position to the end position. We are
leveraging OpenCV libraries, but otherwise writing the code for this subsystem from
scratch.
Inputs: ​RGB​ ​image of whiteboard with foam bridges.
Outputs: ​The bounds to be optimized. The width, height, 2d and 3d positions of each
foam bridge. The location of the goal block.
Connections: ​Passes positions and classifications of foam bridges to the optimizer
subsystem.

3

2.2 Optimizer Subsystem
Description: This subsystem finds the best configuration for the foam blocks, such that
the ball will successfully arrive at the destination. This component is based on
pre-existing project code, but heavily modified by us.
Inputs: ​The initial position and velocity of the ball, the radius of the ball, and bounds to
be optimized. Additionally: width and height of each foam bridge, and the location of the
destination.
Outputs: ​A valid configuration of foam bridges for the marble.
Connections: ​This subsystem sends a valid foam bridge configuration to the
manipulation subsystem.

2.3 Baxter Manipulation
Description: ​Baxter picks a piece from the whiteboard and places it in the correct
location. For this subsystem, we wrote code that utilized a IK solver routine provided
Rethink Robotics.
Inputs: A valid foam bridge configuration (including x,y, and orientation of each piece)
from the optimizer subsystem.
Outputs:​ Using Baxter’s left arm to physically pick and place foam bridges.
Connections: ​None, this is the final subsystem in the pipeline.

3.0 Components Created

3.1 Optimizer
The optimizer uses an algorithm to find an optimal configuration for the foam

blocks. An optimal configuration means the marble can travel down the track into the
goal. The optimizer is integrated with ​Box2d​, which is a physics simulator. Additionally,
the optimizer minimizes a cost function, which is defined as the euclidean distance
between the ball’s final location got from the simulator and the destination. The
optimization process runs for 500 iterations by default, and then send its results to the
manipulation subsystem.

3.1.1 Algorithm/Method
The optimization algorithm we use is Differential Evolution. It is a derivative-free

optimization method, spawning a family of random samples and mixing together

4

http://box2d.org/

successful iterations. We used the default settings in the​ Scipy implementation​, with a
crossover probability of 0.7, a population size of 15, and a crossover strategy where the
current best is mutated with the difference between two random samples in the
population (this is a greedy variant of the Scheme DE1 proposed in [1]).

The communication interface with other programs is through a RESTful API with
HTTP/1.1 protocol​. The interface is built with ​Flask-RESTful​. The visualization and
simulation is done by modifying the Testbed component of Box2D. We injected more
parameters into the built-in structure of Testbed so it can fully simulate our project.

3.1.2 Challenges
The main challenges we face is that the original code is written using the

Metaprogramming​ technique, which means the code can modify itself at compile time.
This technique is useful if the programmer has previous experience using
metaprogramming. However, metaprogramming is difficult to understand for
newcomers. It took a long time to understand the original code and then generalize it so
it can handle all kinds of environments instead of only the hard-coded ones.

3.1.3 Other Methods
We also considered Open Dynamics Engine (ODE) as the simulator instead of

Box2D. Additionally, we made a ROS package based on ODE. We picked Box2D finally
because we did not find an optimizer integrated with ODE. The only solution we got
from Chris Atkeson is integrated with Box2D, so we continued with that solution.

3.2 Computer Vision
The computer vision (CV) subsystem extracts the block poses from an image of

the foam blocks on the board.

3.2.1 Segmentation
We are able to extract all the tracks by going through a very simple computer

vision pipeline. Initially, a RGB snapshot will recorded by the Intel RealSense camera.
Since the background will be mostly white, we can filter out the bulk of it with a simple
thresholding operation in the RGB and HSV domain. To remove the shadow and other
undesirable artifacts, we first remove any small blobs and morphologically “close” the
image to make the images more concrete. Lastly, a media filter is used to remove any
jagged contours in the image. A figure of the segmented image is shown below in figure
3.1.

5

https://github.com/scipy/scipy/blob/v0.17.0/scipy/optimize/_differentialevolution.py#L16-L206
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://flask-restful.readthedocs.io/
https://en.wikipedia.org/wiki/Metaprogramming

Figure 3.1. Example of a segmented image.

3.2.2 Detection
Since all the marble tracks have their distinctive geometry, we can determine

their general shape by their solidity, where solidity is simply the ratio of a blob’s actual
area to its convex hull. Therefore, for a shape like a rectangle, the solidity will be very
close to one while the solidity for other irregular shapes will be lower. We have collected
test data on all the tracks of different sizes and recorded their corresponding solidity
threshold for accurate detection. With accurately extracted blobs, we can also compute
their orientation with respect to the x-axis as well as their centroid location for grasping.
figure of the post-processing is presented below in figure 3.2.

Figure 3.2. Post-processed image, showing block poses and classification.

3.2.3 Calibration
The camera must be calibrated for Baxter to know where the tracks are. We

calibrated the RealSense with a checkerboard to extract both the intrinsic and the

6

extrinsic parameters to the camera. By doing so, we can relate image coordinates with
world coordinates.

3.3 Mechanical Adjustments
Baxter has an electric gripper that must have attachment to grasp the desired

objects. The standard attachments did not work for our specific objects because the
foam bridges have a clear plastic “guard rail” that keeps the marble from falling off the
piece. This would get crushed if used with the original grippers. We created a custom
gripper that fits over the guard rail and contacts the foam piece for a stable grasp (see
figure 3.4). There were some challenges in designing the part because the initial CAD
models we found were not correct and had parts that were mirrored the wrong way. We
then were able to contact Rethink Robotics to get access to the official CAD models that
allowed us to design the grippers correctly. Additionally, we are creating a 3D printed
mount for the RealSense Camera (see figure 3.5). We plan to position the camera at
Baxter’s “chest” height so it can view a 3 ft x 2 ft area of the white board from about 3 ft
away.

Figure 3.4. Custom Baxter gripper ​Figure 3.5. Camera Mount for Baxter

3.4 Baxter Manipulation
The manipulation subsystem uses coordinates from the CV and optimizer

subsystems to plan a trajectory from the current grasper location to the foam block. We
obtain the initial pose of the block from the CV, and the desired final block pose from the
optimizer.

3.4.1 Planning method
The manipulation script requires a list of end effector cartesian coordinates and a

wrist rotations represented as quaternions. We extract the initial and final coordinates

7

from the CV and optimizer outputs, respectively. The first coordinates are the initial
block coordinates, followed by intermediate coordinates, and finally the desired block
poses. The intermediate coordinates pull Baxter’s grasper back, and prevent Baxter
from failing to find an IK solution between the initi. For the initial block poses, we
assume that the blocks are horizontal. Therefore, we provide a constant quaternion so
that Baxter’s graspers contact the top and bottom of the block. For the final block poses,
the optimizer constraints its rotation output from , meaning that Baxter should − ,] [2

π
2
π

never invert the block (it can rotate the block either way).2
π

3.4.2 Challenges
MoveIt didn’t work with Baxter, so we were forced to use the default IK solver

provided by Rethink Robotics. We found that the IK solver often could not find an IK
solution between end effector poses if they were too far apart. To remedy this issue, we
decided to insert intermediate coordinates into the planning function. Additionally, we
spent a significant amount of time on the transformation matrix and writing the planning
code. The transformation matrix was difficult to get right since we had to manually
measure point correspondences between the camera frame and Baxter’s coordinates.

3.4.3 Other Methods
We tried using MoveIt! Interface to control Baxter. However, when using Moveit!

interface, Baxter could form a joint trajectory plan, but could not actually execute the
plan. We believe this is because Baxter failed to fetch the current joint state information.
Since Baxter was not able to utilize MoveIt!, we switched to the default Baxter Interface
for inverse kinematics planning.

4.0 Evaluation
To evaluate the CV subsystem, we compared the dimension and position of the

foam bridges to the ground truth. In practice, we fed 5 images into the CV system, and
compared the positions to measurements taken with a tape measure. We measured
distances from the origin of the camera frame, which was at the center of our view. We
repeated the process for three trials, for each type of block included in the marble kit.

We evaluated the optimization subsystem by running the optimizer on 5 different
block configurations. Each block configuration was represented as an input image fed
into the CV subsystem. For each image, we ran the optimizer 5 times. The optimization
is considered successful if the ball arrives at the destination within the simulation.

To evaluate the entire system, we ran the entire pipeline for 5 iterations. Each
time, we placed a marble at the top left track and let the marble travel down the track. If

8

the marble reaches the goal without falling off the track, the trial is considered
successful. This tests the accuracy of the manipulation subsystem, as well as how well
the entire system accomplished its goal.

4.2 Evaluation Results
Below are the evaluation results for the CV and optimizer subsystems, and the

system as a whole.

4.2.1 CV Subsystem
Table 4.1. Error measurements for the CV subsystem

Trial Block type Error (cm)

1 Long rectangle 0.67

Small arc 1.41

Big arc 1.30

Bone 1.17

2 Long rectangle 0.89

Small arc 1.15

Big arc 1.30

Bone 1.17

3 Long rectangle 1.32

Small arc 1.19

Big arc 0.53

Bone 0.82

4.2.2 Optimization Subsystem
The optimization subsystem was successful 25 times out of the 25 runs on 5 images.

4.2.3 Entire System
The marble made it to the goal successfully 3 out of the 5 trials.

9

5.0 Organization and Reflection

5.1 Division of Labor
We divided up the work on the project based on our previous skills and interests.

Chris and Divya designed and 3D printed custom graspers and a camera mount. Chris
worked on block detection using computer vision methods. Yanda modified the
optimizer to output final block placements. Jen and Divya worked on Baxter’s
manipulation and planning, given coordinates from the CV and subsystems. Andrew
worked with Chris on the CV subsystem and also assisted Divya and Jen with planning.

5.2 Challenges and Time Constraints
Specific portions of each subsystem took us longer to develop than we had

anticipated. For the CV subsystem, we spent a significant amount of time tuning the
thresholds for segmenting the block from the whiteboard. Additionally, it was
challenging to find a mounting point for the camera that included a sizeable portion of
the board. Lastly, inconsistent lighting conditions in the lab caused the CV subsystem to
occasionally fail to detect the calibration checkerboard.

While we were integrating the manipulation and CV subsystems together, we
were also writing the manipulation code. We couldn’t move forward until we figured out
the manipulation portion, causing a bottleneck for the project. Therefore, we could have
had one or two team members develop the manipulation subsystem in parallel with the
optimizer and CV subsystems, speeding up the integration process.

5.3 Lessons Learned
Several things can be changed if we were to do the project again. First, instead

of doing the coordinate transformation manually, we can let ROS TF automatically
calculate the transformation from camera to Baxter coordinates, simplifying our
manipulation code. Second, the MoveIt interface is broken for the Baxter. If we could fix
it, it would be much easier and faster to work with instead of operating on the raw
Baxter interface. Third, the optimizer communicates with other components using a
RESTful API, which is an outdated interface. A more future-proof solution would be
using ​GRPC​ or ​GraphQL​.

10

https://grpc.io/
https://graphql.org/

6.0 Video
Our video can be found ​here​.

7.0 References
[1]​ Storn, R. and Price, K. (2018). ​Differential Evolution - A simple and efficient adaptive
scheme for global optimization over continuous spaces​. [online]
Www1.icsi.berkeley.edu. Available at:
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf [Accessed 3 May 2018].

11

https://www.youtube.com/watch?v=NYh3HTQ2zSk&feature=youtu.be

