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Problem Statement

Implement state estimation and obstacle detection to enable a quadrotor to navigate in indoor (GPS denied)
environment without crashing into obstacles.

Objectives

1. Simulate the dynamics of the quadrotor

2. Literature survey on planning for quadrotors and differential flatness
3. Implement a cascaded controller to control the position and heading of the quadrotor
4. Implement a Kalman Filter in simulation
5. Implement state estimation and obstacle detection by sensor fusion of data from IMU, downward facing
camera and forward facing RGB-D sensor
Dynamics

Figure 1) Frame convention for quadrotor

As shown in figure 1, [el, e2, e3] and [b1,b2,b3] represent the [x,y,z] vectors of the world and body frame.
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As shown above, we are using a 18x1 state vector.

x = position of the body frame of the quadrotor in the world

v = velocity of the body frame of the quadrotor in the world

R = Rotation matrix of the body frame represented in the world frame
Omega = Angular velocity of the body frame of the quadrotor

J = moment of inertia

M = mass

f = thrust vector of the quadrotor

M = Moment vector of the quadrotor



Differential Flatness and Planning

The paper that we reference [1] shows that the system is differentially flat if there exists a set of flat
outputs, Such that the state and the control inputs can be represented as a function of these flat outputs and their
derivatives.
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We can show the any 4 out of these 6 variables [x,y,z,roll, pitch, yaw], can serve as flat outputs for the
quadrotor. Hence, we can directly get dynamically feasible trajectories using any smooth trajectories in flat space.
[2] uses polynomials in the C_free space and finds its coefficients by minimizing the snap of the trajectories because
moment is a function of the snap of the position.

Control Architecture

Motor Rigid Body
Controller Dynamics
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Figure 2) Control Architecture for the Quadrotor
Figure 2 shows the control architecture that we used on the robot. The trajectory planner publishes desired
position [x,y,z] and heading [yaw] of the quadrotor to the position controller. The position controller runs a PID to
calculate the desired roll, pitch, yaw (we use a rotation matrix to represent this). Attitude planner produces a smooth
trajectory to this orientation and passes it to the attitude controller which run a PID loop to produce the desired
thrust on the motors.. Note that this is a cascaded control architecture. Hence, the frequency at which the attitude
controller runs is more than 10 times faster than the frequency at which we run the position controller.

State Estimation: Extended Kalman Filter

The planning and control system discussed up to this point has been based on the assumption that we
completely know our state. On a real robot, this is obviously not the case. There is considerable uncertainty due to
sensor noise and error. In order to filter out the noisy sensor information, we use an Extended Kalman Filter.

The Extended Kalman Filter can fuse multiple data sources while still providing a state estimation during
lapses in sensor information through the prediction phase.

We have designed and implemented a 3D simulator for arbitrary quadcopter dynamics. We have also
implemented an API in MATLAB for a Kalman Filter, Robots and Sensors. This code is extendable to any model of
quadcopter dynamics that we give it. It can also be used for any arbitrary sensor.

We have profiled and simulated a velocity sensor which is indicative of the current optical flow sensor that
we are using on the quadcopter. The dynamics that we are using is currently a point mass model that we assume has
no control inputs. Figure 4 shows how the state estimation performs with gaussian white noise in the process and
measurements from the velocity sensor. Ground truth is a dashed line, while the estimate is a solid line. As you can
see, the estimate in position has a random walk associated with integrating gaussian white noise of a derivative
measurement.
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Figure 4) Linear Drift Associated with Integrating Velocity Measurements
This simulated environment is highly indicative of our overall system as explained in the following State
Estimation: Optical Flow section.

State Estimation: Optical Flow

As mentioned in the previous section. Our hardware system for state estimation can be profiled as an
Extended Kalman Filter that integrates velocity information from an optical flow camera and acceleration updates
from an IMU. The IMU comes integrated directly with the system and the estimates are directly passed onto the
onboard EKF. We used the PX4FLOW [2] camera for optical flow. This sensor can attach directly to the IMU
which can be configured to provide velocity updates to the Extended Kalman Filter.

The PX4FLOW camera calculates the relative motion between the camera and projected pixel coordinates
given by the equation.

V=-T-wxP

Where P is the 3D coordinates of the projected pixel coordinates, T is the relative translation, and ' is

the angular velocity. The paper expresses the idea of “flow” and velocity as.
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Figure 5 shows the raw velocity estimates and the position estimates from the EKF in the configuration
where the drone is maintaining position.

35

= = e
0.04[ — integrated x ~— pose.position.x
~— integrated_y ~— pose.position.y

3.0
0.02
0.01
0.00 ‘
—0.01 ‘

15

10

-0.02

—0.03 05




Figure 5) (Left) Raw Velocity Measurements. (Right) Position Estimates from EKF
These estimates show a strong ability to maintain position. There is only a slight deviation in x and y which
can be attributed to small perturbations in the environment or small errors in the controller.
In the State Estimation: Extended Kalman Filter section, we discussed the linear drift for integrating

velocity estimates in the EKF. Figure 6 shows the linear drift using on the live system.

Figure 6) Odometry Information vs. Ground Truth
Figure 6 shows odometry information vs. ground truth. The base of the arrows represent a pose in 3D space
and the arrow direction and length is the velocity at the current time. As can be seen from the Figure, the top left
corner of the box is where the system starts, as can be seen there is significant drift as the quadrotor moves.

SLAM

For the depth sensor we used an Asus Xtion Pro Live [3]. This camera is an RGB-D sensor that uses
structured light in order to improve its 3D stereo estimates. The mapping package that we used is called RTAB-Map
[4]. This package is a graph and node based SLAM system with a highly maintained ROS wrapper. The package
uses TORO graph optimization techniques and uses bag-of-words model in order to detect loop closures in the
images. We used the OpenNI package in order to handle the point cloud information.

Figure 7 shows the 3D map while standing still and while moving around the quadrotor by hand.

Figure 7) Mapping Information for Stationary (Left) and Moving by Hand (Right)

This information was quite stable when stationary, but whenever the quadrotor was moving, the SIFT
features detected by the algorithm was not able to generate enough inliers to determine the transformation between
the two frames. This made it ineffective to use as this would cause the odometry information to fail. We were only
able to get information at around 0.5 Hz. This was too slow for our needs.



Obstacle Detection

Even though the SLAM information was too computationally intensive to run on our onboard computer, we
wanted to be able to detect and avoid obstacles. We were able to get the point cloud data at around 20 Hz. This was
more than fast enough for our needs. We took the point cloud information and projected it down into the 2D plane.
Figure 8 shows detected obstacles projected down into a 2D cost map. The points are filled and cleared using
ray-tracing on the 3D point cloud information. The cost map is a local map that only persists for as long as the
quadcopter is within some range of the points.

Figure 8) Point Cloud Projected onto a 2D Cost Map
By getting the point cloud data at around 20 Hz, we were able to fill and clear the cost map at around 3 Hz
comfortably, which is an effective speed for our control and planning algorithms.

Conclusions

State estimation is one of the most fundamental technological challenges of the quadrotor system. The
small computational power of on board computers and the constant motion of a quadrotor in flight make it
incredibly difficult to estimate the state of the quadrotor effectively indoors where the quadrotor is GPS denied.
SLAM techniques for estimation pose is an effective way to make up for the drift associated with integrating
velocity updates into an EKF, but the algorithms are in general too computationally expensive. By planning locally
using fast techniques such as optical flow in an environment with good features along with low-weight local
mapping techniques, one can effectively plan and navigate a quadrotor in an indoor environment without the need
for a global position estimate.

We have a final video that showcases our system in its current state. The video has slides describing
various parts of the project with videos after them to show our progress. The video can be seen at the following
link: https://youtu.be/lohw-BtURTO.



https://youtu.be/lohw-BtURTQ
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