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Abstract—Motion planning for unmanned ground vehicle on 

rough terrain has been an active research topic for a long time. 

One of the main challenges comes from the complexity of the 

off-road field environment. In this project, we aimed to 

propose a motion planner for a full-size all-terrain vehicle 

(ATV) for the application of off-road autonomous navigation. 

More specifically, how to build a model-based local motion 

planner under such highly-uncertain environment and 

maneuvering with high speed is investigated through 

simulation platform offline, and then validate on the real-size 

vehicle. Experiments results conducted on the testing field 

shew that our local planner can successfully avoid static 

obstacles with S-shape maneuvering at around 30kph. 

 

I. PLATFORM INTRODUCTION 

  Our platform comes from an undergoing project at 

Robotics Institute cooperated between Field Robotics 

Center (FRC) and Yamaha Motor Company, which aimed to 

develop an autonomous vehicle for off-road driving in 

wilderness environment. Yamaha Viking VI side-by-side 

ATV is served as our main testing platform, which is shown 

in Fig. 1. The vehicle is equipped with custom drive-by-wire 

system, velocity controller, and navigation sensors such as 

GPS/INS, LiDAR, and RGB-D camera. Currently 

developing software modules include classification, pose 

estimation, global and local planner. 

 

II. PROBLEM FORMULATION AND CHALLENGES 

  In this project, we would like to pose a model-based 

local planner for off-road navigation application. In addition 

to the basic capabilities such as static obstacles avoidance, 

the ATV should perform smooth but aggressive 

maneuvering in high-speed with a complex vehicle dynamic 

model. Although vehicle planning can be treated as a 

well-investigated kinodynamic planning problem in control 
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space, several challenges raised when operating in off-road 

environment. First, the vehicle dynamic in off-road 

environment is much more unpredictable in contrast to 

on-road condition. Factor such as wheel-terrain interaction 

for modeling the sliding effect is still an active research area. 

Secondly, developing a local planner for high speed 

operation can be categorized as an anytime planning 

problem. Thus, computational efficiency should be taken 

into account for the real-time concern. 

  Our testing scenario is designed as followed: the vehicle 

should perform S-shape maneuvering without collision with 

any static obstacles based on a model-based local planner. 

Standard operating speed ranges from 10 to 40 kph; the 

baseline testing speed in our case is set as 20 kph with the top 

speed of 30 kph. 
 

III. PLANNER INVESTIGATION 

  Instead of using traditional search-based planner such as 

A* or D*, we use a sample-based planner as our 

development platform. This critical choice comes from an 

insight that sample-based planner is more efficient for 

solving a high dimensional planning problem, which gives 

us a powerful tool when we want to utilize a more complex 
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   Figure 1. The testing vehicle platform and the on-board sensor. 
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dynamic vehicle model for state propagation. Besides, 

maneuvering in wilderness can be seen as a generalized 

planning problem where discretizing the world based on 

resolution might not generate a smooth path. 

  Simulation was first conducted within Open Motion 

Planning Library (OMPL) framework to investigate the 

performance among different sample-based planners. We 

used OMPL.app to simulate the behavior of different 

planners based on our vehicle model and a specific maze 

scenario. Also, we used a benchmark tool provided by 

OMPL to compare the performance of different planners 

with different parameters. It turned out RRT planner is one 

of the competitive candidates. Since all of us are more 

familiar with RRT planner, we decided to use it as our 

baseline planner. 

IV. PLANNER MODULES DESIGN 

  The block diagram of our planner modules is shown in 

Fig. 2, which can be separated into two modules with respect 

to functionality. The collision check module constructed a 

global simplified occupancy grid from vehicle current 

odometry and pure point cloud data, then communicated 

with RRT-based planner for collision check service. The 

velocity command is generated by planner and sent directly 

to the on-board velocity controller for execution. 

Visualization tools are also built via Rviz interface. The 

detail of two modules is described as follow: 

 

a. Collision Check Module 

  Occupancy grid is a commonly-used data structure for 

obstacles detection. It stores one or multiple probabilities in 

each grid cell, and increases or decreases them based on 

sensor model. Since our testing scenario is relatively flat 

without noise, a simplified version of occupancy grid is used 

in the matter of fast implementation, in which we replaced 

the probabilities with a counter. Three different methods for 

obstacles segmentation were investigated and described 

below: 

 

i. Mesh with Simulation in Open Dynamic Engine [1] 

  As shown in Fig. 3(a), the original method implemented 

on the vehicle uses Open Dynamic Engine (ODE) and mesh 

data to simulate the vehicle pose on the ground. Collision is 

reported if an intersection was detected between vehicle and 

mesh or the simulated roll and pitch were beyond 

user-defined thresholds. 

(a) 

 
 

(b) 

 
 

(c) 

 
    

Figure 3. Three different methods of collision check. (a) Mesh with ODE 

simulation. (b) RANSAC segmentation. Original point cloud  

(white). Processed point cloud (colored). (c) Height map algorithm 

 

 

The testing vehicle platform and the on-board sensor. 

 

 

   Figure 2. Block Diagram of our planner API. 
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ii. Plane Removal with RANSAC Segmentation[2] 

  The second approach for collision check module is 

using RANSAC segmentation from Point Cloud Library 

(PCL) to fit the plane model. In our case, the plane model is 

the ground of our testing environment. We extract the 

outliers from RANSAC for obstacle detection. As shown in 

Fig. 3(b), the white point cloud is the original data from 

Velodyne LiDAR. The colorful point cloud is the outliers 

from RANSAC. 

 

iii. Height Map Algorithm[3] 

  The third method we used is height map algorithm. This 

is a simple but efficient algorithm in terms of computation. It 

calculates the height differences within one grid. If the 

height difference is greater than user-defined threshold, it 

will be categorized as an obstacle. As shown in Fig. 3(c), the 

artificial obstacle is approximately 1.5 meters. We set the 

threshold to be 1 meter. Thus it will be recognized as an 

obstacle. 

  Since collision check is the most computationally 

expensive part of our system and we cannot afford to collide 

our platform with the obstacles. Efficiency and reliability are 

the most important requirements. The mesh representation is 

a good approach for future application such as driving on 

rough terrain. However, it was not feasible for our scenario 

in terms of computation consumption. The RANSAC 

segmentation is sensitive to off-road conditions; the plane 

model cannot be perfectly fit on rough terrain. In addition, 

the dusty environment in off-road driving create noises and 

interference to the Lidar. Considering our requirements and 

the discussion mentioned above, we choose height map 

algorithm as our final approach. It’s the fastest and the most 

reliable. Furthermore, to optimize the computing efficiency, 

we used bitwise operation instead of multiplication and the 

obstacle size are dilated to increase robustness of our 

system. 

b. RRT-based Planner Module 

  Fig 5. visualizes the RRT tree. Each node represents a 6 

Degree of Freedom (DoF) states: 

[ , , , , , ]T

forward slidingq x y v v   

where the first three terms stand as a SE2 state space, and the 

last three terms stand as a vehicle-frame velocity in 2D 

plane. For control space, we utilize velocity control input, 

i.e. 2 DoF including forward and angular velocity, since it is 

commonly-used for autonomous ground vehicle, and is 

already built on the current vehicle controller system.  

  In order to overcome the unpredictable characteristic of 

vehicle dynamic in off-road environment, an experimental 

-based model was addressed via field testing. More 

specifically, data is collected on field among different set of 

control inputs, then a predictive model: 

( , , )x f x u t  

is constructed off-line with standard system identification 

process. As shown in Fig. 4(a), the dynamic response of each 

velocity component at vehicle-frame is modeled as a 

first/second-order transfer function with time delay. Since 

the data-driven vehicle response model gives us a good 

estimation of the sliding velocity, which could plays a 

non-negligible role in off-road cases, it shows in Fig. 4(b) a 

sufficient state estimation result when compared with the 

original kinematic model. 

 
 

Figure 4. (a) Data flow of vehicle dynamic response model. The model takes two velocity control  

commands as input and estimates the velocity response in vehicle frame. (b) Comparison between data- 

driven dynamic model and original kinematic model. Note the time interval in each graph is 20 seconds. 
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  As a standard procedure of RRT in control space, a 

control input set and its operation duration should be 

determined in order to propagate toward an extended state 

after a random state is sampled. We first uniformly sampled 

the forward velocity command within an adjustable region. 

This command region is determined at each iteration based 

on previously issued command, current vehicle status, and 

previous executed path such that the vehicle will hold the 

velocity consistency without jerky output. Then, shooting 

method is used to determine the angular velocity command. 

Another modification we applied is the random sampling of 

control duration (see Fig. 5). The initial thought came from 

our simulations in Section III, where we discovered 

choosing either extended-like RRT or connected-like RRT 

stands as a crucial factor for solving different maze 

scenarios. We believe loosening the constraint with such 

randomly sample mechanism will generalize our planner for 

various problems.  

  Finding an optimal plan is crucial for motion planning 

but computationally expensive if using a sample -based 

control-space planner. To overcome it, we implemented a 

time-optimal RRT* work from Frazzoli [4]. Moving from 

RRT toward RRT* includes two more optimization steps in 

each iteration: reconnecting of extended state, and tree edges 

trimming. For this project, only the first of two optimization 

steps was implemented because the trimming process in the 

second step includes updating the whole children tree, which 

will trade off with planning time. Since it is almost 

impossible to propagate to the same state in 6 DoF state 

space, the re-connection process from extended state to 

minimal-cost state instead of nearest state will require 

updating the extended state (i.e.  
'

extendq  and extendq  in Fig. 

5) if they are close enough. Last, since we would like to 

minimize our traveling time, the traveling time is estimated 

when calculated distance instead of Euclidean distance in 2D 

state space.  

  The replanning process is designed as follow: at the 

beginning of each planner loop, vehicle status, collision 

check map, and goal point are updated to formulate a RRT 

control-space planning problem. Then, we solved such 

problem many times and published the best one we had so 

far when the planner loop terminates. There is no tree 

maintenance process, i.e. we throw away the whole RRT 

tree, in each solving process. Though re-generating the 

whole RRT tree makes no sense at first glance, in practical 

we found out such design can prevent the planner from 

publishing poor solution if bad tree structure was built at the 

beginning of growing stage. We admitted that if an optimal 

solution can be obtained from one single shot, the replanning 

setting would have changed significantly [5]. Since there is a 

time delay between when vehicle status is updated and when 

the velocity command generated by RRT-based planner is 

executed, we utilize the same data-driven dynamic model to 

estimate the vehicle state after such time delay. The 

parameters used in our local planner are listed in TABLE I. 

V. EXPERIMENT AND DEMO VIDEOS 

  Experiments were conducted on field to show the 

feasibility of our approach. Three 3-meter-length static 

obstacles were placed on the sides of a rectangle shaped field 

with 10-meter width and 150-meter length. The vehicle 

successfully avoided all the obstacles at 20 kph. However, 

driving at higher speed (~30kph) sometimes made collision 

   
 

Figure 5. The visualization of our RRT-based planner. 

 

 



 

5 

 

 

map vulnerable to noise such as dust and sand blow up when 

the vehicle drove through, which highly affect the path 

quality outputted by planner. The example of planning path 

generation is visualized in Fig. 6. We have recorded some 

videos here: 

a. Midterm Demo : Simulation in OMPL.app 

http://ppt.cc/sBLAh 

b. Final Demo : On-field testing with path visualization 

https://youtu.be/LibnO8_Sjm0 

VI. CONCLUSION AND FUTURE WORK 

A RRT-based local planner for high-speed maneuvering 

is proposed for the application off-road navigation. Several 

methods are investigated for obstacle detection, with the 

final version implemented with height map algorithm. A 

simplified version of occupancy grid is built in global frame 

when vehicle is moving. Several modifications is 

implemented in order to obtain the minimal traveling-time 

trajectory, with a data-driven vehicle model is utilized for 

state propagation. Our planner can successfully avoid three 

obstacles on turnpike with vehicle velocity up to 30 kph. 

Future works include constructing a more complex model in 

3D space, strengthening the collision map with more 

informative data such as mesh, or classification segmenta 

-tion, and planner optimization with tree maintenance.  
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Figure 6. Screenshots of planner visualization output. The green path is the trajectory where each point is encoded  

with a 6 DoF state, 2 DoF control input, and a control duration. The red points are the filtered point cloud segmented as obstacles. 
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