

1

Abstract—Motion planning for unmanned ground vehicle on

rough terrain has been an active research topic for a long time.

One of the main challenges comes from the complexity of the

off-road field environment. In this project, we aimed to

propose a motion planner for a full-size all-terrain vehicle

(ATV) for the application of off-road autonomous navigation.

More specifically, how to build a model-based local motion

planner under such highly-uncertain environment and

maneuvering with high speed is investigated through

simulation platform offline, and then validate on the real-size

vehicle. Experiments results conducted on the testing field

shew that our local planner can successfully avoid static

obstacles with S-shape maneuvering at around 30kph.

I. PLATFORM INTRODUCTION

 Our platform comes from an undergoing project at

Robotics Institute cooperated between Field Robotics

Center (FRC) and Yamaha Motor Company, which aimed to

develop an autonomous vehicle for off-road driving in

wilderness environment. Yamaha Viking VI side-by-side

ATV is served as our main testing platform, which is shown

in Fig. 1. The vehicle is equipped with custom drive-by-wire

system, velocity controller, and navigation sensors such as

GPS/INS, LiDAR, and RGB-D camera. Currently

developing software modules include classification, pose

estimation, global and local planner.

II. PROBLEM FORMULATION AND CHALLENGES

 In this project, we would like to pose a model-based

local planner for off-road navigation application. In addition

to the basic capabilities such as static obstacles avoidance,

the ATV should perform smooth but aggressive

maneuvering in high-speed with a complex vehicle dynamic

model. Although vehicle planning can be treated as a

well-investigated kinodynamic planning problem in control

1: Robotics Institute, Carnegie Mellon University, PA 15213

2: Mechanical Enginnering, Carnegie Mellon University, PA 15213

3: Yamaha Motor , Japan

space, several challenges raised when operating in off-road

environment. First, the vehicle dynamic in off-road

environment is much more unpredictable in contrast to

on-road condition. Factor such as wheel-terrain interaction

for modeling the sliding effect is still an active research area.

Secondly, developing a local planner for high speed

operation can be categorized as an anytime planning

problem. Thus, computational efficiency should be taken

into account for the real-time concern.

 Our testing scenario is designed as followed: the vehicle

should perform S-shape maneuvering without collision with

any static obstacles based on a model-based local planner.

Standard operating speed ranges from 10 to 40 kph; the

baseline testing speed in our case is set as 20 kph with the top

speed of 30 kph.

III. PLANNER INVESTIGATION

 Instead of using traditional search-based planner such as

A* or D*, we use a sample-based planner as our

development platform. This critical choice comes from an

insight that sample-based planner is more efficient for

solving a high dimensional planning problem, which gives

us a powerful tool when we want to utilize a more complex

Spring 2016, 16662 Robot Autonomy, Final Report (Team 7)

Motion Planning for Autonomous All-Terrain Vehicle

Guan-Horng Liu1, Samuel Wang1, Shu-Kai Lin1, Chris Wang2, and Tiffany May1

Advisors: Mr. George Kantor1 and Mr. Jay Hiramatsu3

 Figure 1. The testing vehicle platform and the on-board sensor.

2

dynamic vehicle model for state propagation. Besides,

maneuvering in wilderness can be seen as a generalized

planning problem where discretizing the world based on

resolution might not generate a smooth path.

 Simulation was first conducted within Open Motion

Planning Library (OMPL) framework to investigate the

performance among different sample-based planners. We

used OMPL.app to simulate the behavior of different

planners based on our vehicle model and a specific maze

scenario. Also, we used a benchmark tool provided by

OMPL to compare the performance of different planners

with different parameters. It turned out RRT planner is one

of the competitive candidates. Since all of us are more

familiar with RRT planner, we decided to use it as our

baseline planner.

IV. PLANNER MODULES DESIGN

 The block diagram of our planner modules is shown in

Fig. 2, which can be separated into two modules with respect

to functionality. The collision check module constructed a

global simplified occupancy grid from vehicle current

odometry and pure point cloud data, then communicated

with RRT-based planner for collision check service. The

velocity command is generated by planner and sent directly

to the on-board velocity controller for execution.

Visualization tools are also built via Rviz interface. The

detail of two modules is described as follow:

a. Collision Check Module

 Occupancy grid is a commonly-used data structure for

obstacles detection. It stores one or multiple probabilities in

each grid cell, and increases or decreases them based on

sensor model. Since our testing scenario is relatively flat

without noise, a simplified version of occupancy grid is used

in the matter of fast implementation, in which we replaced

the probabilities with a counter. Three different methods for

obstacles segmentation were investigated and described

below:

i. Mesh with Simulation in Open Dynamic Engine [1]

 As shown in Fig. 3(a), the original method implemented

on the vehicle uses Open Dynamic Engine (ODE) and mesh

data to simulate the vehicle pose on the ground. Collision is

reported if an intersection was detected between vehicle and

mesh or the simulated roll and pitch were beyond

user-defined thresholds.

(a)

(b)

(c)

Figure 3. Three different methods of collision check. (a) Mesh with ODE

simulation. (b) RANSAC segmentation. Original point cloud

(white). Processed point cloud (colored). (c) Height map algorithm

The testing vehicle platform and the on-board sensor.

 Figure 2. Block Diagram of our planner API.

3

ii. Plane Removal with RANSAC Segmentation[2]

 The second approach for collision check module is

using RANSAC segmentation from Point Cloud Library

(PCL) to fit the plane model. In our case, the plane model is

the ground of our testing environment. We extract the

outliers from RANSAC for obstacle detection. As shown in

Fig. 3(b), the white point cloud is the original data from

Velodyne LiDAR. The colorful point cloud is the outliers

from RANSAC.

iii. Height Map Algorithm[3]

 The third method we used is height map algorithm. This

is a simple but efficient algorithm in terms of computation. It

calculates the height differences within one grid. If the

height difference is greater than user-defined threshold, it

will be categorized as an obstacle. As shown in Fig. 3(c), the

artificial obstacle is approximately 1.5 meters. We set the

threshold to be 1 meter. Thus it will be recognized as an

obstacle.

 Since collision check is the most computationally

expensive part of our system and we cannot afford to collide

our platform with the obstacles. Efficiency and reliability are

the most important requirements. The mesh representation is

a good approach for future application such as driving on

rough terrain. However, it was not feasible for our scenario

in terms of computation consumption. The RANSAC

segmentation is sensitive to off-road conditions; the plane

model cannot be perfectly fit on rough terrain. In addition,

the dusty environment in off-road driving create noises and

interference to the Lidar. Considering our requirements and

the discussion mentioned above, we choose height map

algorithm as our final approach. It’s the fastest and the most

reliable. Furthermore, to optimize the computing efficiency,

we used bitwise operation instead of multiplication and the

obstacle size are dilated to increase robustness of our

system.

b. RRT-based Planner Module

 Fig 5. visualizes the RRT tree. Each node represents a 6

Degree of Freedom (DoF) states:

[, , , , ,]T

forward slidingq x y v v

where the first three terms stand as a SE2 state space, and the

last three terms stand as a vehicle-frame velocity in 2D

plane. For control space, we utilize velocity control input,

i.e. 2 DoF including forward and angular velocity, since it is

commonly-used for autonomous ground vehicle, and is

already built on the current vehicle controller system.

 In order to overcome the unpredictable characteristic of

vehicle dynamic in off-road environment, an experimental

-based model was addressed via field testing. More

specifically, data is collected on field among different set of

control inputs, then a predictive model:

(, ,)x f x u t

is constructed off-line with standard system identification

process. As shown in Fig. 4(a), the dynamic response of each

velocity component at vehicle-frame is modeled as a

first/second-order transfer function with time delay. Since

the data-driven vehicle response model gives us a good

estimation of the sliding velocity, which could plays a

non-negligible role in off-road cases, it shows in Fig. 4(b) a

sufficient state estimation result when compared with the

original kinematic model.

Figure 4. (a) Data flow of vehicle dynamic response model. The model takes two velocity control

commands as input and estimates the velocity response in vehicle frame. (b) Comparison between data-

driven dynamic model and original kinematic model. Note the time interval in each graph is 20 seconds.

(a) (b)

4

 As a standard procedure of RRT in control space, a

control input set and its operation duration should be

determined in order to propagate toward an extended state

after a random state is sampled. We first uniformly sampled

the forward velocity command within an adjustable region.

This command region is determined at each iteration based

on previously issued command, current vehicle status, and

previous executed path such that the vehicle will hold the

velocity consistency without jerky output. Then, shooting

method is used to determine the angular velocity command.

Another modification we applied is the random sampling of

control duration (see Fig. 5). The initial thought came from

our simulations in Section III, where we discovered

choosing either extended-like RRT or connected-like RRT

stands as a crucial factor for solving different maze

scenarios. We believe loosening the constraint with such

randomly sample mechanism will generalize our planner for

various problems.

 Finding an optimal plan is crucial for motion planning

but computationally expensive if using a sample -based

control-space planner. To overcome it, we implemented a

time-optimal RRT* work from Frazzoli [4]. Moving from

RRT toward RRT* includes two more optimization steps in

each iteration: reconnecting of extended state, and tree edges

trimming. For this project, only the first of two optimization

steps was implemented because the trimming process in the

second step includes updating the whole children tree, which

will trade off with planning time. Since it is almost

impossible to propagate to the same state in 6 DoF state

space, the re-connection process from extended state to

minimal-cost state instead of nearest state will require

updating the extended state (i.e.
'

extendq and extendq in Fig.

5) if they are close enough. Last, since we would like to

minimize our traveling time, the traveling time is estimated

when calculated distance instead of Euclidean distance in 2D

state space.

 The replanning process is designed as follow: at the

beginning of each planner loop, vehicle status, collision

check map, and goal point are updated to formulate a RRT

control-space planning problem. Then, we solved such

problem many times and published the best one we had so

far when the planner loop terminates. There is no tree

maintenance process, i.e. we throw away the whole RRT

tree, in each solving process. Though re-generating the

whole RRT tree makes no sense at first glance, in practical

we found out such design can prevent the planner from

publishing poor solution if bad tree structure was built at the

beginning of growing stage. We admitted that if an optimal

solution can be obtained from one single shot, the replanning

setting would have changed significantly [5]. Since there is a

time delay between when vehicle status is updated and when

the velocity command generated by RRT-based planner is

executed, we utilize the same data-driven dynamic model to

estimate the vehicle state after such time delay. The

parameters used in our local planner are listed in TABLE I.

V. EXPERIMENT AND DEMO VIDEOS

 Experiments were conducted on field to show the

feasibility of our approach. Three 3-meter-length static

obstacles were placed on the sides of a rectangle shaped field

with 10-meter width and 150-meter length. The vehicle

successfully avoided all the obstacles at 20 kph. However,

driving at higher speed (~30kph) sometimes made collision

Figure 5. The visualization of our RRT-based planner.

5

map vulnerable to noise such as dust and sand blow up when

the vehicle drove through, which highly affect the path

quality outputted by planner. The example of planning path

generation is visualized in Fig. 6. We have recorded some

videos here:

a. Midterm Demo : Simulation in OMPL.app

http://ppt.cc/sBLAh

b. Final Demo : On-field testing with path visualization

https://youtu.be/LibnO8_Sjm0

VI. CONCLUSION AND FUTURE WORK

A RRT-based local planner for high-speed maneuvering

is proposed for the application off-road navigation. Several

methods are investigated for obstacle detection, with the

final version implemented with height map algorithm. A

simplified version of occupancy grid is built in global frame

when vehicle is moving. Several modifications is

implemented in order to obtain the minimal traveling-time

trajectory, with a data-driven vehicle model is utilized for

state propagation. Our planner can successfully avoid three

obstacles on turnpike with vehicle velocity up to 30 kph.

Future works include constructing a more complex model in

3D space, strengthening the collision map with more

informative data such as mesh, or classification segmenta

-tion, and planner optimization with tree maintenance.

ACKNOWLEDGMENT

 The authors would like to thank Professor Siddhartha

Srinivasa for the excellent tutoring in this course, and

graduate students in the Personal Robotics Laboratory,

especially Laura Herlant and Shushman Choudhury, for

after-class assistance and suggestions. The authors also wish

to express their gratitude to Mr. George Kantor and Mr. Jay

Hiramatsu for project advising and platform supporting.

REFERENCES
[1] Wettergreen, David, and Michael Wagner. "Developing a framework for

reliable autonomous surface mobility." (2012).

[2] PCL Documentation: How to use Random Sample Consensus Model.

http://pointclouds.org/documentation/tutorials/random_sample_consens

us.php

[3] ROS Package Summery: velodyne_height_map.

http://wiki.ros.org/velodyne_height_map

[4] Jeon, Jeong Hwan, Sertac Karaman, and Emilio Frazzoli. "Anytime

computation of time-optimal off-road vehicle maneuvers using the

RRT*." Decision and Control and European Control Conference

(CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011.

[5] Ferguson, Dave, Nidhi Kalra, and Anthony Stentz. "Replanning with

rrts." Robotics and Automation, 2006. ICRA 2006. Proceedings 2006

IEEE International Conference on. IEEE, 2006.

Figure 6. Screenshots of planner visualization output. The green path is the trajectory where each point is encoded

with a 6 DoF state, 2 DoF control input, and a control duration. The red points are the filtered point cloud segmented as obstacles.

http://ppt.cc/sBLAh
https://youtu.be/LibnO8_Sjm0

