Spring 2016 # 16662 # Robot Autonomy # Team 7 Motion Planning for Autonomous All-Terrain Vehicle

Guan-Horng Liu, Samuel Wang, Shu-Kai Lin, Chris Wang, Tiffany May Advisor : Mr. George Kantor

Platform Introduction

Motivation & Challenges

Problem Formulation

OMPL Framework

ROS Planning PipeLine

Collision Check Module RRT-Based Planner Module

Final Demo

Platform Introduction

Project Overview

General purpose autonomous technology development for off-road driving in wilderness environment.

Vehicle Platform

2016 YAMAHA Viking VI side-by-side ATV

On-board Sensors

Novatel, Velodyne 64, Multisense S21

Software Modules

Classification, Pose Estimation, Global Planner, Local Planner

Lidar **GPS/INS** RGBD Camera

Parter

Field Robotics Center YAMAHA Motor Company, Japan YAMAHA Motor Corporation, USA

Motivation & Challenges

Motivation

Propose a new local planner for off-road navigation with

- Static obstacles avoidance
- High-speed maneuvering in complex vehicle dynamic

Kinodynamic Planning in Control Space

Challenges

Uncertainty in Vehicle Dynamic Response Modeling e.g. Wheel-terrain interaction...

Real-Time Implementation

e.g. Anytime planning, Computational efficiency

Problem Formulation

Testing Scenario Design

S-shape maneuvering with static obstacles avoidance Vehicle velocity with at least 20kph Model-based planner

Available Module/Sensor

YAMAHA Velocity Controller (YVCA) LiDAR (point cloud), GPS/INS (position & velocity)

Show Time First

20kph

Platform Introduction

Motivation & Challenges

Problem Formulation

OMPL Framework

ROS Planning PipeLine

Collision Check Module RRT-Based Planner Module

Final Demo

OMPL :: Framework

only when planning with differential constraints

OMPL :: OMPL.app

RRT Planner

KPIECE Planner

OMPL :: Benchmark

Solving Time among multi planners

Path Difference among multi planners

ROS Planning PipeLine

Collision Check Module

Simplified Occupancy Grid

Mesh

RANSAC Segmentation

Height Map Algorithm

Implemented Approach

Collision Check :: Simplified Occupancy Grid

- Count only increases
- If (count > threshold) \rightarrow obstacle

Collision Check :: Mesh

- Use Open Dyanmic Engine (ODE) to cast ray from 4 wheels down to the mesh
- Calculate vehicle pitch and roll from 4 contact points
- Collision condition:
 - Pitch > threshold
 - o Roll > threshold
 - Mesh interact with the ray between two wheels

Collision Check :: RANSAC Segmentation

- Use RANSAC to obtain a cloud fitting to the plane model
- Get point cloud outliers to extract obstacles

Collision Check :: Height Map Algorithm

- Calculate the height difference of multiple points within one grid
- If (height_difference > threshold)
 - \rightarrow It's an obstacle

Collision Check :: Implemented Approach

- Requirement: Efficiency + Reliability
 - Efficiency
 - 1. Using height map algorithm as final approach for efficiency
 - 2. Bit-wise operation for faster multiplication
 - Reliability
 - 1. Using obstacle counter for more robust detection
 - 2. Dilate obstacle size

Why RRT?

- High dimensional planning w/ complex dynamic model
- Smooth maneuvering

1. Data-Driven Vehicle Dynamic Response Model Predictive Model : $\dot{x} = f(x, u, t)$

SE2 + R³ vehicle-frame velocity

1. Data-Driven Vehicle Dynamic Respons

2. Control Shooting Method w/ Random Control Duration

> Flexible constraints between connect and extend RRT Steering Mechanisum Constraint in Control Space

Distance =
$$\frac{\sqrt{(x_1 - x_2)^2 - (y_1 - y_2)^2}}{\sqrt{(\dot{x_1} - \dot{x_2})^2 - (\dot{y_1} - \dot{y_2})^2}}$$

- 1. Data-Driven Vehicle Dynamic Response Model
- 2. Control Shooting Method w/ Random Propagation Steps
- **3. Sub-Optimization w/ Minimal Traveling Time** One more step needed to reach RRT* in control space Connect extened node to minimum node

- 1. Data-Driven Vehicle Dynamic Response Model
- 2. Control Shooting Method w/ Random Propagation Steps
- 3. Sub-Optimization w/ Minimal Traveling Time

4. Replanning

Solving loop in 20Hz, planner loop in 2Hz Estimate start state using dynamic model in **1**. Path consistence among each planner loop

Final Demo Video

Vehicle operation vel: 10 ~ 40 kph Base line requirement: 20 kph Final Demo here: ~ 30 kph

Any J Questions?

