
1

Team Harp: Amazon Picking Challenge Stowage Task
16-662 Robot Autonomy, Carnegie Mellon University

Abhishek Bhatia, Alex Brinkman, Feroze Naina, Ihsane Debbache, and Rick Shanor

Project Video Link: https://youtu.be/SN3n3u0Wb2s

Introduction

 The stowage task for the Amazon Picking Challenge requires

autonomous decision making to control arm motions, end effector

actuation, perception, and classification. The goal is to pick 12 items

out of an unstructured bin and place them onto a 12 bin shelf and return

the contents of every shelf bin. To accomplish this task, a UR5 6 DOF

robotic arm and suction end effector system is used to manipulate

items. A head mounted Kinect 2 for Windows RGB-D sensor is used

to identify grasp points out of the unstructured bin and a base mounted

Kinect used for item identification after grasping.

System Setup – Hardware

 The Arm is a UR5 manipulator from Universal Robots and comes with its only controller and power supply. The

Base and end effector are custom designed and fabricated. The grasping system consists of a suction cup and vacuum

equipped with a pressure sensor that is controlled by a desktop. The Kiva pot shelf and red stowage bin are provided by

Amazon and will be the same used in the competition. There is a computer-controlled actuator underneath the stowage bin

to tilt the stowage bin as needed.

System Setup – Software

 The UR5 comes equipped with a touch screen interface for typical manufacturing assembly. We connect to the

controller over LAN socket to router and control the robot from a networked computer. ROS is used to manage the sensors,

world model, controllers, and task-level executives. The TF package is in charge of managing the robot state, collision

objects, and target item grasp points, and drop off set points. Caffe is used to train and get predictions from the Convolution

Neural Network used for identification. PCL and OpenCV are used for the various pointcloud segmentation operations and

image filtering operations as needed. Once the competition is completed, our code will be available on Github for general

use.

Arm Planning

 Arm planning is implemented through ROS and Moveit! using Open Motion Planning Library planners. A URDF

of the robotic arm is provided by the manufacturer and modified to include our custom end effector. The default planning

group starts at the base mounting point and extends through all 6 joints to the tool attachment mount. Our planning group

is extended to include the end effector to enable target poses defined in the world coordinates for suction cup locations.

Collision models for the mounting frame, order bin, and kiva pod shelf are loaded in using the MoveIt! planning scene

interface. Plan details are specified using Moveit! like maximum planning time and which OMPL planner to use.

 Each single query plan took approximately 5 seconds to find acceptable paths. Given the competition time constraint

of 15 minutes, planning between set points would take too long and inhibit the effectiveness of the robot. A feature to

precompute the path plans was developed and implemented in our system. The trajectory replay feature learns paths when

learning mode is enabled. Whenever the trajectory-playback execution order is specified, the feature looks through the

learned database for similar start configurations and goal poses and execute the stored trajectory. Otherwise, a Cartesian or

single-query plan must be computed.

Figure 1: System Depiction

2

 Our implementation of arm control implements a ROS blocking server that can accept planning details and

execution orders. The motivation was to abstract planning as another step in our state controller so that infinite planning

loops are not possible. Multiple plans and planning details can be tuned for the needs of each motion plan request. The

available execution orders are trajectory-playback, Cartesian plan, strict Cartesian plan, fast single-query, and slow single-

query. Trajectory-playback is a feature that replays precomputed trajectories. The Cartesian plan is a fast planner that uses

FastIK to quickly solve the inverse kinematics of the arm at short intervals along the path. Straight-line paths are computed

from start and goal poses. Additional waypoints can be specified and the Cartesian planner will attempt to find collision-

free, straight-line plans between each waypoint. The Strict version of the Cartesian execution order forces the arm to be

able to travel to the goal state whereas the normal Cartesian execution order will result and execute a partial path. Finally,

the single query execution order uses the OMPL planner to perform a traditional motion planning query. The only difference

between fast and slow planners is the allowable planning time. The OMPL planner could be specified for each request.

RRT* was our default planner for its ability to find valid plans and improve them as time allows. RRT plans were fast but

caused large swinging motions that are not desired for our picking application.

Grasp Point Selection

 To determine grasp surfaces and valid grasp points, we first determine clusters corresponding to a set of points that

are part of the same smooth surface. This is done using the region growing segmentation and clustering algorithm. We used

the base code provided as part of the ‘Region Growing Segmentation’ pointcloud tutorial [1] to generate valid clusters. Once

the clusters are identified, the clusters are scored and sorted to find the best grasp point. The score is computed for each

clusters based on the maximum number of points, height of each cluster, area of the horizontal surface of each cluster (x-y

axis), and direction of normal. The cluster with the maximum score is selected as the best cluster. The grasp point is then

determined as the centroid of the best cluster, with the height of this point updated as the maximum height of the cluster.

Figure 2: RGB Segmentation and Grasp Selection

Grasping Execution

 Once grasp points are identified, the arm is moved to a setpoint to prepare for the pickup. The suction system is

turned on and the variation in pressure is recorded. The grasp detection pressure is set as the measured average pressure

minus 2.5 times the standard deviation. Using this dynamic setting ensures we are robust to small changes in pressure, hose

configuration, height above sea level, and other factors that may influence unrestricted vacuum pressure. Using the 2.5

sigma boundary ensures we are as sensitive as possible to grasp detection without risking false positives. With the suction

system on, the arm is commanded over the item and iterated down onto the item until pressure feedback is detected or the

goal has been reached. If the grasp was successful, the arm moves the item over the identification camera to perform item

identification. Otherwise, the arm is commanded over the bin where the stowage bin is reimaged and another attempt is

made. First pass picking success using this approach is approximately 90%.

Item Identification - Database Generation

Any approach for item identification requires a large amount of training

data to create a classifier. To generate this data for 40 items, a turntable was

created to aid in database generation. The turntable consists of an actuated

turntable, capable of 360 degrees of rotation and an actuator to vary the view

angle of the Kinect v2 RGB-D sensor. The turntable is shown in Figure 3.

 Manually masking each input image would have required a lot of time

so HSV thresholding and convex hull filters were applied to the images to

Figure 3: Turntable for Dataset Collection

3

automatically mask the input images. Each HSV filter had to be tuned by hand for each item. Items that contained green

elements on the edges required a different background color. Specular items against the green background would reflect

green hues so a cardboard background was chosen for specular and green items.

Once the HSV threshold was tuned per item, a convex hull routine was applied to the image to create cleaner filters.

The convex hull operation finds the smallest polygon that contains all of the pixels that pass the HSV color filter. This

ensures that holes in the masks do not appear in the final mask which could cause the identification classifier to learn

fictitious features. Figure 3 shows the output of each operation

Figure 4: Original image (left), the HSV color filter image (center), and the final mask after Convex Hull (right)

In total, approximately 100 masked images were captured for each of the 40 items in the item dictionary. These

images were rotated, distorted, mirrored, lightened, and darkened to create approximately 400,000 images for future

classifier training.

Item Identification – Online Segmentation

Online segmentation is required to produce the mask similar to the images created for the database. Since the robotic

system geometry is known, a cubic region of interest is created and pointcloud points that fall outside this region of interest

are removed from the image. Care was taken to ensure the region of interest was large enough to capture full images of the

item without including bad pixel values Figure 4 shows the raw and masked images.

Figure 5: Raw (left) and Masked (right)

Item Identification - SLIC Superpixels

Superpixel generation is a color based segmentation technique. A superpixel is defined as a group of pixels with

similar characteristics. To solve our problem, we are using the SLIC (Simple Linear Iterative Clustering) superpixel

algorithm to generate superpixels from an input image, primarily because of its low computational overhead [2].

Considering the scope of this project, we did not modify much within the superpixel generation pipeline and directly used

the off the shelf package provided by scikit-image ‘skimage.segmentation.slic’ that takes in a RGB image (3D array) and

outputs an integer mask indicating segment masks [4]. Once we generate the valid superpixels for each input (masked)

image, we input these superpixels to the CNN described in sections below for training and testing/identification purposes.

Figure 6 shows the output of the superpixel operation.

Figure 6: SLIC Superpixels

4

Item Identification - CNN for Superpixel Identification

To capture the large amount of appearance variation from item to item, a convolution neural network (CNN) was

chosen to be the classifier. The popular deep net AlexNet was selected since its architecture and training made it well suited

to the Amazon picking application. The CNN takes in a 255x255 RGB pixel array and passes the image through a series of

five convolutional layers that filter and preprocess the image for distinctive features. Next, three fully-connected layers are

trained to detect the identifying features for each item.

Our implementation of AlexNet requires an additional output layer to map the 1000 class predictions to the 40 class

predictions needed for our application. This final layer consists of an SVM classifier with no initial training. The CNN takes

in a 255x255 RGB image of each superpixel and outputs the probability that the superpixel belongs to each class. This is

repeated for each superpixel in the segmented image to create an Nx40 prediction matrix for N superpixels.

The CNN was trained on images collected by our turntable apparatus and segmented into superpixels. The initial

parameters were used for the net and our 400,000 training images were used to adjust the parameter and output SVM later

using a learning rate of .001 and batch size of 250 training images. The model was loaded into an Nvidia Titan GPU for

training and requires approximately 6 hours of computation to retrain the model.

Item Identification - Local Item Prediction

The goal of local item prediction is to identify the grasped item out of the 12 possible items in the request list to

guide the robot executive decision-making. The probability of correct identification is low for a 12 choose 1 decision, but

still useful to the operation of the system.

 The output of the CNN produces an Nx40 matrix of predictions for N superpixels and the 40 items in the item

dictionary. From this output, the items not contained in the 12 item request list can be ignored and the probabilities for the

remaining 12 items renormalized. Finally, the average prediction is taken over all the superpixels for each item. This results

in a 1x12 matrix of confidence for each of the 12 possible items. The local prediction is made as the item with the greatest

confidence.

Item Identification - Global Item Prediction

The goal of global item prediction is to identify the entire set of items out of the 12 possible items in the request

list. During autonomous operation, the robot will grasp and pickup each of the items and perform local prediction on each.

After all images are captured, segmented, and passed through the CNN, global prediction compares the full set of prediction

probabilities to make the best overall prediction.

The global item prediction begins with the Nx40 matrix of predictions for each of the 12 items. As with local

prediction, impossible items are removed from the superpixel matrix. As before, each matrix is averaged across superpixels

and renormalized to get the average item confidence.

Next, the global prediction finds the most confident item in all of the image confidence tables and assigns that image

to the item label. The predictions for the selected item label is removed from the remaining images and each image

confidence table is renormalized. Now the process repeats. With the set of remaining items, the highest confidence

prediction is taken and assigned to the correct image. The predictions for the best item keep getting removed until all items

have been assigned to images.

Item Identification – Results

 The item identification process was tested by acquiring several images for each item, serving as ground truth, and

choosing 12 images at random to do item identification. The segmentation and CNN operations were applied to the images

and then global prediction was performed on the output prediction tables. The study was performed on 10,000 random

permutations of images and compared to the ground truth. Overall, 75% accuracy was achieved by this method. A

5

confusion matrix was created comparing the global prediction results against the ground truth. Figure 6 shows several easily

confused items from the confusion matrix.

Figure 7: Examples of Several Confusion Sets

Place Operation

 The place operation occurs once the item has been grasped and imaged for identification. The arm is commanded

to one of the 12 shelf bins and then translates into the center of the bin. The suction system is disengaged and the item

deposited in the bin. The arm withdraws and moves to look down into the stowage bin, ready to pick up the next item.

Results

 The current system performs first-pass picking with 90% accuracy. Local prediction is approximately 58% accurate

and global item prediction is 75% accurate. Overall, we can pick and place approximately 84% of items and according to

the competition rules score full points on approximately 63% of attempts. These results are promising but the system will

require refinements before the competition in the end of June.

Future Work

 Plans to improve the performance of the robot are focused on the identification and stowage operations.

Identification will be improved by revisiting the segmentation to reduce data loss in the pointcloud that could be reducing

the confidence of the predictions. The CNN will be trained on more data as we acquire more testing data to better reflect

the images it will be actually see at runtime. Finally, multiple viewpoints may be acquired to ensure there is at least one

good image of the item.

 The other main area of improvement is the stowage operation. Currently, there is no pose estimation of the grasped

item and the placement on the shelf goes to the center of the shelf. This works well for most of the items but larger items

will need to be handled better. We want to implement a simple pose estimate by approximating a bounding box from the

identification pointcloud. From that, a simple offset may be added to the shelf placement for improved placing.

References

[1] PointCloud Library http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php

[2] Achanta, Radhakrishna, et al. Slic superpixels. No. EPFL-REPORT-149300. 2010.

[3] Wikipedia. 2016 https://en.wikipedia.org/wiki/Lab_color_space

[4] Scikit-Image. 2016 http://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic

[5] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional

neural networks." Advances in neural information processing systems. 2012.

[6] The Quadratic-Chi Histogram Distance Family . Werman Ofirpele.

http://www.ariel.ac.il/sites/ofirpele/publications/ECCV2010.pdf

6

Appendix 1: Confusion Matrix

Appendix 2: Amazon Item Dictionary 2016

