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Abstract

A crucial step towards achieving complete autonomy in warehouse robots is cor-
rectly identifying objects and their pose in a cluttered environment. We present
an end to end system which uses RGB images along with depth point clouds to
identify and compute the 3D pose of objects in a cluttered space. We have also
implemented a ground truth validation mechanism with a detailed error analysis
which validates the use of our system for cluttered manipulation tasks.

1 Introduction and Problem Description

There has seen an explosive surge in the demand for warehouse automation technologies in the
last decade. This surge in demand for autonomous warehouse robots has been accompanied by
the need to develop autonomous warehouse pick-and-place systems which are robust enough to
operate in a cluttered environment. A crucial step towards the complete autonomy of warehouse
robots is a robust vision system which can use the image feed from cameras attached to the robots
to accurately determine the pose of the objects which need to be manipulated. In 3, we have
described our approach to design and install an end to end system for 3D pose estimation of multiple
objects in a cluttered environment. Our end to end system paves the way for robot manipulation
of objects in a cluttered environment with the vision of complete robot autonomy in warehouse robots.

2 Related Work

There has been work done in the problem space concerning 3D pose estimation for grippers
pertaining to a preselected object in a cluttered environment. The de-facto approach is to utilixe some
kind of ANN to segment the target object from the scene, employ stereo vision/depth sensing to
extract 3D point cloud and then use a convergence method to estimate the pose of the end-effector of
the robot to successfully clasp the target.
Sumi, Yasushi, et al.[5] do a 3D object recognition which uses segment-based stereo vision. An
object is identified in a cluttered environment and its position and orientation (6 dof) are determined
accurately enabling a robot to pick up the object and manipulate it. The object can be of any shape
(planar figures, polyhedra, free-form objects) and partially occluded by other objects. Segment-based
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stereo vision is employed for 3D sensing.

Comparatively Shin, Yong-Deuk, et al.[6] use a grasping strategy that is composed of the
approaching vector, opposition vector, and grasping type. In this paper, they use the iterative closest
point (ICP) algorithm for recognizing and estimating the pose of an object.

3 Model

3.1 The Pipeline

The functional architecture of our model is described in Figure 1. Each component of the pipeline is
explained in detail in the further sections.

Figure 1: Architecture of our Pipeline

3.2 Data Extraction

We used an ABB Robotic Arm (2) to capture data from the Realsense camera 3. We captured images
of objects from the YCB dataset. The YCB dataset has a variety of common household objects and is
a famous dataset used in robotic manipulation tasks as a reliable benchmark. The data obtained from
this step includes: the robot pose, RGB and depth images. Furthermore, since the transformation
from RGB camera to depth camera is known, we can also get the images aligned to RGB or depth
frames. This can be seen from 4.
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Figure 2: ABB Robotic Arm used for Data Extraction

Figure 3: RealSense SR300 camera

Figure 4: Data Extraction

3.2.1 Automatic Labeling Mechanism

To make the project more general and can be expanded in the future, automatic labelling is imported
into our project. Objects are substracted and labeled from depth images and fed to the next step, fully
convolutional network, for segmentation. This can be illustrated from 5.

Figure 5: The Automatic Labeling Mechanism
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3.2.2 Dataset Generation

3.3 Object Detection and Image Segmentation

In order to get de-noised point cloud, first we need to get the segmented region of the object on
the image plane and to identify the class of the object. To achieve this goal, we implemented fully
convolutional network to pixel-wisely assigned each pixel to one of the 14 classes (13 objects +
background) . We used 2000 images and its corresponding labeled data to train the network for
300,000 iterations, fine-tuning was conducted based on voc8s pre-trained model. The final mean
accuracy per class is 0.91, and the mean Intersection of Union per class is 0.86. The object detection
and segmentation pipeline is shown in 6. The sample segmentation result is shown in 7. Post-
processing is also needed to remove the noise and fill in small holes in the segmented region to get
better results.

Figure 6: Object Segmentation and class identification

Figure 7: Sample segmentation result

3.4 Point Cloud De-noising

The Point Cloud De-noising mechanism can be illustrated from 8. The stages of the de-noising
process can be briefly described as:

1. Transforming the point cloud from depth frame to RGB frame.
2. Using the Camera intrinsic and extrinsic parameters to project the points of the point cloud in the
RGB camera frame.
3. De-noising the point cloud image using the segmented image from 3.3.
4. Extracting the De-noised points and projecting them back into the point cloud space.
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Figure 8: Point Cloud De-noising

3.5 Transformation Matrix finding

In order to find the transformation Matrix from camera to Robot base(TB
C ),We needed the transforma-

tion matrix from camera. However, this matrix was not easily to get, because it depended on how we
mount the camera and how manufacture design the camera itself. Instead of directly calculate these
transformation matrices, we used the least square optimization method to find out the transformation
matrix. Basing on the framework we found in the paper, we need two transformation matrices, one is
transformation matrix from Robot Base to End of Effector and transformation matrix from Camera
frame to Object frame. The information we had in hand was the transformation matrix from Robot
Base frame to end of effector frame given by ABB robot arm itself.And then we used April tag to
get the transformation matrix from camera frame to April tag. By gathering this two information in
different robot pose, we could use the least square optimization to get the Transformation from End
of Effector to Camera frame(TC

E ).

Figure 9: optimization from transformation matrix

3.6 Point Cloud Registration

In the point cloud registration, We used the iterative closest point(ICP) to align two point cloud
and get the transformation matrix from Object to Camera frame. ICP is an algorithm employed to
minimize the difference between two clouds of points. However, The ICP method was not very
robust in our case and finding a good initialization is very important for a good alignment result. We
initialize the position by register the center of the reference mesh and the center of our de-noised
dense point cloud, and we initialize the orientation by fitting the de-noised point cloud to a cylinder
and then generate the reference rotation vector. Based on the initialization, we then conduct ICP to
minimize the root mean square error and generate the final 3D pose estimation of the object.
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3.7 Ground Truth Validation Mechanism

By knowing the size of April tags and the camera intrinsic parameters, we could get the Translation
matrix from April tag frame to the camera frame( TC

A ). Then by visually finding the translation
matrix from April tag frame to object frame( TA

O ). By knowing these two information and the prior
translation matrix( TC

B ), we could get the translation matrix from object to Robot base frame. On the
other hand, We could also get Translation matrix from Object frame to Robot base frame from our
proposed method.

TB
O = TB

E ∗ TE
C ∗ TC

A ∗ TA
O TB

O = TB
E ∗ TE

C ∗ TC
D ∗ TD

O

from April Tag from our proposed method

In order to evaluate the pose, we had to figure out a method to find the ground truth of the
object pose. April Tag is a visual fiducial system, useful for a wide variety of tasks including
augmented reality, robotics, and camera calibration. In out implementation, we attached April tag on
the target object, and then found out the relationship between the center and April tag(Figure 10).

Figure 10: Using April tags to get ground truth

By these two translation matrices, we could compare the proposed method by evaluation the distance
of the object’s center in the robot frame by these two transforms and the difference in angle. The
limitation of using April tag was it only work when the camera could clearly see the April tag and the
view angle could also influence the accuracy of the detection of April tag. Because of that, we could
only put the object in some position.

4 Results

In the final evaluation, we chose three different objects from YCB dataset, which were a mustard
bottle, a sugar box, and a banana. The reason why we chose these three was because each of them
stood as a specific shape of the object in the YCB dataset which could good enough to evaluate our
proposed method. The mustard and the sugar box represent the object that was quite regular that
could be simply taken as a cylinder or a box. On the other hand the banana was quite different, then
we could take it as an arbitrary shape.
We expressed the evaluation result as six numbers which mean the distance between the center and
the angle between the each axis. In the average result, for the mustard, the distance of center were
less than 0.5cm in x and y axis and less than 3cm in z axis; the angle error is around 15 degree. For
the sugar box, the distance of center were less than 0.1cm in y-axis and less than 2cm in x and z-axis;
the angle error is around 13 degree. For the banana, the distance of center were less than 0.1cm in y
-axis and less than 1.5cm in x and z-axis; the angle error is around 30 degree.
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Figure 11: Pose estimation compared with ground truth(purple); first row: RGB images, second row:
Pose comparison, third row: point cloud alignment

Figure 12: Error on pose estimation result compared with ground truth on five different pose of
mustard bottle(including positional(meter) and rotational(degree) error along each axis in 3D space)

Figure 13: Error on pose estimation result compared with ground truth on five different pose of sugar
box(including positional(meter) and rotational(degree) error along each axis in 3D space)
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Figure 14: Error on pose estimation result compared with ground truth on five different pose of
banana(including positional(meter) and rotational(degree) error along each axis in 3D space)

5 Work division

The work division is briefly summarized in Table 1

Table 1: Work Division

Task Division

Data Extraction Huan-Yang Chang, Yiqing Cai, Siddharth Raina,
Man-Ning Chen, Sambuddha Sarkar

Automatic Labeling Mechanism Man-Ning Chen, Siddharth Raina, Sambuddha Sarkar

Object Detection and Segmentation Yiqing Cai, Man-Ning Chen

Point Cloud De-noising Siddharth Raina, Sambuddha Sarkar

Transformation Matrix (T end−effector
camera ) Modeling Huan-Yang Chang

Point Cloud Registration Huan-Yang Chang, Yiqing Cai, Man-Ning Chen,
Siddharth Raina

Ground Truth Validation Mechanism Huan-Yang Chang
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