
Autonomous Navigation in Unknown Environments
via Language Grounding

Koushik
(kbhavani)

Aditya
(avmandal)

Sanjay
(svnaraya)

Mentor
Jean Oh

Introduction

As robots become an integral part of various domains ranging from households to military, they are
expected to be intelligent systems that can support the human counterparts by taking advantage of
new modalities for control, sensing and reasoning capabilities. This will require robots to possess
cognitive abilities; understand natural language, perceive semantics of the environment around them,
and perform high-level reasoning once given a task. This level of understanding would enable humans
to easily cooperate with complex robots without requiring specialized interfaces, protocols or training.

This project aims to develop a robot that can understand natural language commands and plan to
navigate through known or unknown environments to achieve the specified goal. With this high level
project goal in place, the team aims to focus specifically on the language grounding and planning
aspects under the assumption that perception through vision is a solved problem.

The project platform is a part of Robotics Collaborative Technologies Alliance (RCTA).

Problem Specification

Given

1. User Input: Commands as voice or text in structured (natural) language

2. Perception: A predetermined map of obstacles

Therefore it has been assumed that the robot is capable of perceiving its environments and localizing
the obstacles or goal locations in its environment. In such scenario, given the user command in a high
level natural language, the following goals have been set forth.

Goals

1. NLP: Ground commands from structured language to action space

2. Motion Planning: Plan for the grounded commands

The Robot

For the purpose of this project, the robot used to implement the ideas was the Clearpath Husky, a
ground vehicle with the following specifications:

1. 4-wheeled, 4-motor skid-steered robot

2. 4 Mac Minis for processing:



(a) am1: Local planner (with roscore)
(b) am2: Perception
(c) am3: ROS Master
(d) am4: Global Planner

3. Combination of NML and ROS communication pipelines

Figure 1: Clearpath Husky

Implementation

This section can be divided into 3 major sections, each one talking about one of the following; i) the
language grounding module, ii) the communication module, and iii) the motion planning module.

Language Grounding

The language parser implemented in this project is quite simplistic. Importance was given to the
recognition of objects and constraints, and grammar and semantic understanding took a backseat.
Separate dictionaries were defined to hold the world coordinates of various objects (table, chair, desk,
etc.) and the definitions of constraints (beside, behind, left of, etc.). A search for these keywords in
the user’s command, followed by correlating the objects found with the constraints (either specified
by the user or assumed by default), results in grounded commands in the action space of the robot
(in terms of world coordinates). The planning module then takes these ‘checkpoints’ as input, and
generates an optimal path of waypoints (and replans as it goes, in the case of RTAA*) for the robot to
follow.

Some of the capabilities of the simple language parser are demonstrated below. These examples
assume that the left-right constraints are along the world x-axis, the front-behind constraints are along
the world y-axis, and the radius of an object is denoted by robject.

Example 1

Command: Go to the left of the table
Inference:
Goal = (xtable, ytable)− (rtable, 0)

Example 2

Command: Go to the chair, and then to the left of the desk
Inference:

2



Goal 1 = (xchair, ychair)− (0, rchair)
Goal 2 = (xdesk, ydesk)− (rdesk, 0)

Example 3

Command: Go to the left of the desk via the chair
Inference:
Goal 1 = (xchair, ychair)− (0, rchair)
Goal 2 = (xdesk, ydesk)− (rdesk, 0)

Example 1 exhibits a basic command being grounded to the (x, y) position of the target with an
appropriate offset so that the specified constraint is satisfied. Examples 2 and 3 show more complex
commands that involve multiple targets. In both examples, a pair of checkpoints are recognized
and generated. However, the order of the checkpoints remain the same in both cases, although
the intention of the user’s command in Example 3 is to go in the opposite order. These examples
demonstrate the capability of the parser to recognize goals and constraints, and the shortcoming of
not realizing the semantics of the command.

Communication

The Husky used in the project came with an internal communication pipeline between its various
machines. The part that is relevant to the navigation aspects of the robot is visualized below in Fig(2).

Figure 2: Communication Network

As mentioned earlier in the section, there are two ROS cores that power the system. One of the ROS
masters is located in am3, and is the hub for the language parsing, perception, and global planning
modules, which are divided between three computers - am2, am3, and am4. The other ROS core runs
on am1, which houses the local planner for the Husky. The MagicRosBridge node (visualized in
pink at the bottom of the figure) and the Magic AM1 node (shown in green on the top right of the
figure) are responsible for facilitating proper communication between the two ROS masters running
on the robot. The MagicROSBridge node expects waypoints in a specified structural format to be
published to a ROS topic called rctawaypoints, converts these waypoints to a format that the local
planner can process, and communicates them to Magic AM1. The global planner nodes implemented
in this project publish waypoints in the expected format to the rctawaypoints topic. This sums up a
brief description of the communication pipeline associated with the motion planning and navigation
of the robot.

3



Motion Planning

The robot Husky is equipped with low level controllers which ensure trajectory following if a global
planner provides it with a set of waypoints along a trajectory.

The environment of the robot has been modelled as a grid-world which allow for implementation of
graph-search algorithms to search for optimal paths to the goal. Multiple state-of-the-art algorithms
(some of which find applications in real-time motion planning) were reviewed, such as A*[1],
RTAA*[2], LRTA*[3] and LSS-LRTA*[4].

A* Algorithm

A* is an algorithm for finding cost-minimal paths in state space (graphs). For every state s, encoun-
tered during the search, A* computes the minimal cost-to-come g(s) and maintains a heuristic for
the state h(s) to subsequently compute f(s) = g(s) + h(s). Note that the heuristic needs to be
consistent for A* to be optimal. The algorithm maintains a priority queue called OPEN list which
initially consists just of the start state (node). The priority function for the queue is the f -value of a
given state. The state s with the smallest f -value is popped from the OPEN list. If it is the goal state,
the algorithm terminates. Otherwise, the cost-to-come of the state is updated if necessary and the
successors of s are all inserted into the OPEN list. This process repeats until the goal state is popped
from the OPEN list terminating with a success or the OPEN list is empty in which case the algorithm
terminates with failure.

Real-Time Algorithms

Although the shortest path is obtained, offline search algorithms like A* are not ideal for dynamic
environments. It does not account for moving obstacles and in a large graph search problem planning
time might be too high before the robot starts to execute the plan. This necessitates the development
of real-time planning algorithms where search happens in real-time.

Real-time heuristic search methods interleave planning and execution. They find only the beginning
of a trajectory from the agent’s current position to the final goal position. Their search is hence
limited to the local region in the state space around the agent which can be reached within a small
number of actions (or edges in the graph). Once a local trajectory has been determined, the agent
executes appropriate actions to move along the planned trajectory. This process is repeated until the
agent reaches its goal position.

Since the strategy involves only local searches the total planning time is generally lower but at the cost
of optimality. However the major advantage with real-time algorithms is that they can satisfy dynamic
constraints like dynamic obstacles in the environment. In this project two versions of A* algorithm
that are competitive to the much conventional D* algorithm which has already been implemented on
the robot.

1. RTAA* Algorithm

Real-Time Adaptive A* algorithm is a real-time search algorithm that chooses its local search spaces
smartly after partial execution of local trajectories. The adaptive nature of the algorithm helps in
reducing the planning time of subsequent A* searches when performing multiple A* searches from
the current state of the agent by appropriately updating the heuristic costs of the states based on
history of traversal. Hence each of the A* search is more informed than the previous A* algorithm.

Assume that s is a state that was expanded during an A* search. We can obtain an (updated)
admissible estimate of its goal distance h(s):

The distance from the current start state scurr to any goal state via state s is equal to sum of the
distance from the start state scurr to state s and the goal distance h(s). It clearly cannot be smaller
than the goal distance h(scurr). Therefore we have:

4



Algorithm 1 RTAA* Algorithm

1: while scurr 6= GOAL do
2: AStar(lookahead) . Local Planning
3: if s̄ = FAILURE then
4: return FAILURE
5: for all s ∈ CLOSED do
6: h(s) = g(s̄) + g(s̄)− g(s)

7: movements := any desired integer greater than zero
8: while scurr 6= AND movements > 0 do
9: scurr = succ(scurr) along obtained local trajectory . Plan Execution: 1 Step

10: movements = movements - 1
11: increase cost of edges in graph (dynamic obstacles)
12: if cost of current cost-minimal path has increased then
13: break

g(s) + h(s) ≥ h(scurr)

h(s) ≥ h(scurr)− g(s)

h(s) ≥ f(s̄)− g(s)

The algorithm also has a concept of lookahead and movement which define the current start state
scurr and s̄ more precisely. Lookahead defines how far or how local a particular A* search is and
movement defines how much along the obtained local path the agent moves. Generally, higher the
lookahead, less sub-optimal the obtained path. When lookahead is infinte, the algorithm degenerates
to a normal A* algorithm. Movement allows for replanning between A* searches. In a highly
dynamic environment, lower movement is preferable. The algorithm has been described in Alg.(1).
The notation followed in the algorithm is as follows:

The lookahead is the number of states, at the most, to be expanded by A*.

The parameter movement is the number of steps to move along the plan given by A* algorithm.

The current state of the agent is scurr.

The state that A* was just about to expand when it terminated is represented by s̄.

2. LRTA* Algorithm

LRTA* and RTAA* are similar algorithms with the strategy for update of heuristics different.

LRTA* replaces the heuristic of each expanded state with the sum of the distance from the state to
a generated but unexpanded state s and the heuristic of state s, minimized over all generated but
unexpanded states s. The heuristics of the other states are not changed as their cost-to-come need
not be optimal when A* terminated. If h′ denotes the heuristic after all the updates, the heuristics of
LRTA* satisfy the following for all expanded states s:

h′(s) = min
a∈A(s)

(c(s, a)) + h′(succ(s, a)) (1)

where a is the action considered from the action space A.

LRTA* and RTAA* perform similarly for smaller lookaheads but for larger lookaheads LRTA*
updates heuristics to be more informed than RTAA*. However since the update step of LRTA* is
more computational(minimal over all possibilities), it takes longer planning time for LRTA than
RTAA*. This can be attributed to the fact that LRTA* needs to perform two searches, one to search
in the local state space and another search to appropriately update the heuristics.

Since the experiments involved a small state space (owing to the environment constraints and
resolution of graph) RTAA* was preferred over LRTA*.

5



Implementation of Algorithms

Two of the above motion planning algorithms were implemented and tested on the robot. The first
one was the classic A*, which works very well (for its notorious simplicity) in static environments.
The second one was the Real-Time Adaptive A* algorithm, which can outperform the A*, and also
be adapted to dynamic (constantly changing) environments.

The A* algorithm was run on the robot in a number of predefined worlds. The objects (obstacles
and targets) were placed at known world coordinates, and a discretized cost map of the world was
generated and passed to the algorithm. Then, various commands, like the ones discussed in section
Language Grounding, were given to the robot were successfully executed. Video links demonstrating
the same can be found in the Results and Media section.

The RTAA* algorithm was tested both in simulation as well as on the robot. Some of the results from
simulation:

Figure 3: Small Lookahead. Low optimality and low planning time.

Figure 4: Balances optimality and planning time

Figure 5: Infinite Lookahead: Equivalent to A*. Optimal but higher planning time.

The parameter lookahead determines the weighing of planning time and optimality of planning.
Fig.(3 - 5) show the dependence of optimality on lookahead. The importance of movement can be
witnessed in the videos attached along with the report.

The algorithm was implemented on the robot. Similar to the implementation of the A*, objects were
placed at known world locations, and a discretized cost map of the world was generated and passed

6



to the algorithm. Additionally, predefined changes to the world environment were specified at certain
timestamps. For completeness, these changes were emulated in the real world. A video demonstrating
the performance of this algorithm in dynamic environments is included in the Results and Media
section.

Conclusion

The project was largely successful, and most of the set targets were achieved. The implementation of
different algorithms helped demonstrate the real-world applications of these methods in the context
of this project. Further work in integrating an active perception system using the robot’s onboard
sensors and expanding the functionality of the current language processing system will enable more
robust experiments to be performed on the system.

Work Division

The team believed that division of work might reduce the speed of the project progress as the
components of the project pipeline we were focussing on were closely connected. Hence we decided
to work together on all aspects of the project. Each one of us believes we have contributed equally.

Results and Media

A* planner, Demo 1

A* planner, Demo 2

Real-Time Adaptive A* planner with lookahead of 4 and movement 2

References

1. Peter E. Hart, Nils J. Nilsson, Bertram Raphael, A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths, IEEE Transactions of Systems Science and Cybernetics,
July 1968

2. Sven Koenig, Maxim Likhachev, Real-Time Adaptive A*, In Proceedings of International
Conference on Autonomous Agents and Multi-Agent Systems, May 2006

3. Sven Koenig, A Comparison of Fast Search Methods for Real-Time Situated Agents, In
Proceedings of International Conference on Autonomous Agents and Multi-Agent Systems,
2009

4. Sven Koenig, Xiaoxun Sun, Comparing Real-Time and Incremental Heuristic Search for
Real-Time Situated Agents, In Proceedings of International Conference on Autonomous
Agents and Multi-Agent Systems, 2009

7

https://www.youtube.com/watch?v=bfF4MVUdp3o
https://www.youtube.com/watch?v=3X13clb0rLQ
https://www.youtube.com/watch?v=mN74htaB_vI

