
16-662 Robot Autonomy Project Final Report
Multi-Robot Motion Planning In Tight Spaces

Aum Jadhav
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

ajadhav@andrew.cmu.edu

Cyrus Liu
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

xiyuanl1@andrew.cmu.edu

Kazu Otani
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

kotani@andrew.cmu.edu

Max Hu
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

yuanh@andrew.cmu.edu

Abstract

We have developed a system for testing multi-robot motion planning algorithms, us-
ing Anki Cozmo robots. To demonstrate our framework, we have also implemented
a recent algorithm for planning the motion of a fleet of robots operating in tight
spaces [1]. The main tasks included establishing centralized multi-robot control
of the Cozmo robots, designing a global localization system, and implementing
the motion planning algorithm. We successfully tested our system on three robots
operating in a tight T-shaped map.

1 Problem definition

Multi-robot planning is the problem of planning trajectories for multiple robots such that they:

• Drive robots from initial to final configurations

• Avoid static and dynamic obstacles

• Avoid inter-robot collisions

• Respect dynamic models of the robots (kinematic model, velocity/acceleration limits)

Figure 1: The multi-robot planning problem

While many algorithms have been proposed for multi-robot motion planning, most of them have only
been tested in simulation. Our goal was to build a test platform for multi-robot motion planners. We
found that when even small amounts of noise or uncertainty are introduced (which will happen in
all real-world robotics situations), the performance of the robot fleet degraded quickly and often did

16-662 Robot Autonomy (Spring 2017), The Robotics Institute, Carnegie Mellon University



not match their behavior in simulation. We believe that having a physical platform to test motion
planning algorithms will help researchers and students design more robust planners.

2 Related works

Our project is based on the recent work on Multi Robot Discrete RRT (MRdRRT) in [1], detailing
a sampling-based multi-robot motion planning framework on composite roadmaps. The idea of
planning on composite roadmaps is not new; it has been used in previous works [3][4]. The innovation
of MRdRRT was that it used a sampling-based algorithm to plan across the graph. The authors show
that this makes MRdRRT up to 10 times faster than previous methods, especially in high-dimensional
problems. We also referred to [2] for the Local Connector method used in [1]. This algorithm allows
us to find a collision-free sequence of robot motions, given start and goal configurations for each
robot.

3 System design

In this section, we will discuss the resources and infrastructure we were provided, as well as how that
affected the design decisions that shaped our system.

3.1 Hardware

The Anki Cozmo robots has is a differential track drive robot with an actuated forklift and an
articulated head. A monocoluar camera is built-in to the head. The forklift allows it to interact with
objects in its envrionment, including Lightcubes. The robot also has wheel encoders and optical
sensors to aid in localization.

Figure 2: Anki Cozmo robot

Figure 3: Cozmo’s 3 Light Cubes

The robot interacts with its Lightcubes visually and wirelessly. The image tags printed on the cube
faces allow the Cozmo to infer 6DoF pose information with respect to the cube. The Lightcubes also
have accelerometers and LEDs in them that are used during interactive games with Cozmo, but we do
not utilize these functions.

3.2 Architecture

To set up centralized communication with the robots, we extended an open-source ROS Cozmo driver
[5]. The driver implements several wrapper and helper functions that enable interfacing with Anki’s
own Cozmo SDK [6] within a ROS framework. To connect the master computer to the robots, we
first connect an Android phone with the Cozmo app to each robot. We then put them in SDK mode,
and connect the Android phones to the computer with USB debug enabled.

We used ROS namespaces to have an instance of the driver node running for each robot. This way,
controlling additional robots is just a matter of adding another robot namespace in the roslaunch file.

Figure 4 shows the node graph for 2 robots. Notice how each namespace has a driver node, but
there is only one mrdrrt_node, which is the central planner node. Mrdrrt_node is called with a
rosservice call to start planning, and is given some goal configurations. It first queries TF to get the
start configurations of the robots, then constructs a path for each of the robots. The central planner
node then passes waypoints to the robots one at a time, making sure to wait for all of the robots to

2



finish the current set of waypoints before sending the next commands. This way, we ensure that the
robots move in a synchronized fashion and do not collide with each other.

Figure 4: Node graph showing separate namespaces for each robot, and a central planning node

3.3 Interface

Figure 5: Rviz visualization of multiple robots

Since we are working within the ROS ecosystem, we are able to leverage visualization tools like
RViz, that allows us to keep track of the status of the robots. The interface that we have setup in RViz
is shown in Figure 5. The interface shows video streams from each of the Cozmos, and frames for the
map, cubes, and robots. We have also set up an interface to manually control the robots (two squares
on the lower left corner).

3.4 Localization

Cozmo’s localization is based on its wheel odometry (dead reckoning) and drift correction when
observing Lightcubes. Internally, Cozmo keeps track of its position with respect to its own origin,
which is the defined as the point at which the Cozmo was turned on. As the robot moves, the pose of
the robot with respect to its internal origin ("odom->base_footprint" frame transform in Figure 6) is
updated with wheel odometry. This pose estimate drifts over time, so our cube localization system
compensates for this.

When we design the map, we also define the cube locations and orientations in the map. For simplicity,
we typically aligned the cube axes with the global map axis. Position coordinates of the cubes are
encoded within the cozmo_driver node. When a robot sees a Lightcube, the SDK gives us the
estimated transformation from the robot frame to the cube frame. We use this to calculate the robot’s
global pose, and publish a map->odom transform that compensates for the odom->base_footprint
frame drift.

We noticed that the cube pose estimation was quite limited in range and accuracy. It had a maximum
range of 35 to 40cm: past that distance, the robot would not register any cubes, even if the cube was
in the robot’s field of view. There was also significant noise in the pose estimate when the cube is
further away, with variances of up to 10cm and 30 degrees. To mitigate the effects of this noise, we
used the robot_localization package in ROS to run an Extended Kalman Filter for our pose estimate.

3



Figure 6: Transform tree showing the relationships between the global map frame, robots, and cubes
as

3.5 Environment

We aimed to design an environment that would:

• Showcase the strengths of the MRdRRT algorithm

• Allow the Cozmos to be consistently localized

To achieve the first design goal, we created a constrained T-shaped map, as shown in Figure 7. In this
map, it is not possible for two robots to move past each other if they are in the same channel. This
forces them to utilize the extra space at the ends of the channels to get out of each other’s way in
order to achieve their collective goal.

Given our map design, we then had to decide on cube locations. We aimed to place the cubes in
locations that would be seen from as many configurations as possible, taking into consideration field
of view, range of detection, and orientation. For our T-shaped map, we decided to place one cube at
each junction, and the third cube on the other side of the channel.

Notice that the robots in Figure 7 are placed in orientations from which they can easily see a cube.
Before planning, it is necessary to initialize a robot in this manner to ensure that it knows its global
location.

Figure 7: Our final map

4



3.6 Locomotion

The Cozmo SDK provides functions for driving Cozmo in a straight line for a designated distance,
and turning in place by a designated angle (defined as drive_straight and turn_in_place respectively).
It also provides a function for commanding the robot to move to a set waypoint. By default, this
function considers all coordinates to be in the Cozmo’s local origin, which is our ’odom’ frame. After
implementing localization and coordinate transforms, we were able to use handle waypoints in the
global map frame. However, the SDK’s go_to_waypoint function seems to use a controller with
built-in trajectory shaping, where it moves along an arc towards the goal point. This makes collision
checking between waypoints harder for our planner, as we do not know the exact path the robot will
take. Hence, we decided to implement our own go_to_waypoint function.

To simplify the motion planning problem to straight lines between waypoints, we implemented the
go_to_waypoint function as follows:

1. Turn in place towards goal position.

2. Drive straight to goal position.

3. Turn in place to the goal orientation.

The robot re-localizes at each waypoint (using visible cubes) to correct for drift.

3.7 Planning

To demonstrate our framework, we implemented the MRdRRT algorithm [1].

It is a centralized multi-robot planning algorithm, which makes it well-suited for problems that
require tight coordination between robots. Cozmo robots do not recognize each others’ presence, so a
centralized planner (as opposed to distributed/decentralized) seems to be simpler in implementation.

MRdRRT works by planning over a space of composite configurations, which is the set of robot
configurations within a pre-computed probabilistic roadmap (specific to the robots and environment).
The vertices in the composite roadmap represent all combinations of collision-free placements of
the m robots, and the edges represent all combinations of robot movements where the robots remain
collision-free while moving on their respective single-graph edges. Because the size of this graph
grows exponentially with number of robots, it may become infeasible to explicitly represent the entire
graph in memory. For this reason, MRdRRT represents the composite roadmap as an implicit graph,
inspired by [3].

The difference between MRdRRT and previous methods such as M* [4] is that MRdRRT is a
sampling-based algorithm, while other algorithms search over the implicit graph. This allows fast
solutions to high-dimensional motion planning problems. In each step of the algorithm, a random
composite configuration is sampled, similar to the first step in traditional RRT. The tree then expands
to the nearest node on the implicit graph (this is the "discrete" part of MRdRRT). By repeating this
process, we are able to find a path of composite configurations from start to goal, which can then be
broken down into paths for individual robots.

Figure 8: Our planning environment, with start and goal configurations for three robots.

5



(1) (2) (3)

(4) (5) (6)

Figure 9: MRdRRT in Motion

4 Challenges

4.1 SDK Hacks

Our framework relies on known cube-to-location mappings for global localization. This was made
difficult by the fact that each Cozmo arbitrarily assigns cube IDs to the three cubes upon initialization,
despite the fact that the SDK documentation claims to have strict mappings between cube IDs and the
markings on the cubes. This resulted in situations where one Cozmo would enumerate one cube as
cubeID = 1, while another Cozmo would enumerate the same cube as cubeID = 2. These assignments
also tend to shuffle around when the SDK program is re-initialized.

We found the code block in the SDK that causes this problem, and it is shown in Figure 10. Obviously,
the developers know this is not a robust solution. However, because the Cozmo is made to be a toy
and most consumers only own one robot, this is unlikely to be a problem for the vast majority of
users.

We devised a quick and simple solution to get around this issue. Once a Cozmo is initialized, the
cube IDs stay constant. We hard-coded cube symbol relationships in the driver, and modified the
mapping from cube IDs (the numbers that the SDK reports) to symbols for individual robots after
connecting them.

Figure 10: Excerpt from Anki’s Cozmo SDK

4.2 Localization

Localization for the Cozmo was non-trivial, due to a variety of factors in locomotion, sensing, and
software.

• Odometry Drift
Cozmo’s tank treads slip in some situations, especially while rotating in place, leading to
odometry drift.

• Noisy pose information from cubes
Lightcubes helped the robots to re-localize while executing a path, but pose information
from the cubes was very noisy. We minimized the effect of the noise with an EKF node that
filters the raw pose information.

6



• Software
TF (ROS’s built-in transform library) does not work with Python 3, but the Cozmo SDK
required Python 3.5 as a dependency. Instead of querying TF for transformations between
frames, we kept track of all relevant transforms within the cozmo_driver nodes and per-
formed our own matrix operations to calculate the transforms as required.

4.3 Setup

The process for connecting multiple Cozmos to a single ROS master is as follows:

1. Connect each robot to an Android phone via Wi-Fi.
2. Put the robots into SDK mode via the Cozmo app.
3. Make sure USB debug mode is on for each of the phones, and plug them into a USB hub

that is plugged into the computer.

This process became more cumbersome as the number of robots increased. Battery life was also a
challenge, for both the Cozmos and phones. After about an hour of testing, we had to suspend our
activities to recharge. We noticed that the Cozmo app used up battery life at a faster rate than the
Android phones could be charged from the USB port.

Ideally, we would be able to connect to the Cozmos directly from the computer. A potential method
is to have multiple instances of an Android emulator running, but this requires having each emulator
connect to a unique Wi-Fi network for each Cozmo robot, further complicating the setup.

5 Results

To demonstrate our multi-robot planning platform, we implemented MRdRRT planning for 3 robots
on our constrained T-map. A video of the demonstration, along with our code for the multi-robot
Cozmo driver can be found here: https://github.com/mrsd16teamd/cozmo_mrdrrt.

Figure 11: 3 robots attempt to switch places in a tight T-shaped map

6 Limitations

6.1 Assumptions in environment setup and collision checking

In our environment representation, we are currently assuming that all robots are circular holonomic
robots moving in 2D. We further assume that all obstacles are axis-aligned rectangles. This allowed
us to simplify our collision-checking to simple points in the configuration space.

6.2 Localization

Cozmo has a limited ability (in precision and range) to recognize and localize cubes. Currently, we
are manually designing a map with 3 cubes. For larger environments, it will be necessary to extend
on Cozmo’s default localization system.

7

https://github.com/mrsd16teamd/cozmo_mrdrrt


7 Future work

• Use additional “objects” in environment
Cozmo’s SDK provides the ability to create additional "objects" in the environment by print-
ing out (physically, on paper) AR tags that are distinct from those found on the Lightcubes.
These objects actually have unique object names and IDs, contrary to the Lightcubes.
These objects can act as additional visual landmarks, allowing more robots to be added for
localization in larger environments.

• Integrate Flexible Collision Library(FCL)
With our current implementation, the environment and obstacle representation is very limited.
In the future, we recommend that planners interfacing with our multi-Cozmo system use
FCL or other collision checking libraries that allow the robots and obstacles to be represented
as complex polygons/polyhedrons, in 2D and 3D.

• Implement planning algorithms in C++ for speed in higher dimensional planning problems
We implemented our planning algorithm in Python for development speed and readability.
This worked for our simple planning problem. However, the complexity of planning
increases exponentially with the number of robots, so more complex planning problems will
be better solved with a C++ implementation.

8 Work division

• Aum Jadhav - Planning algorithm implementation, infrastructure
• Cyrus Liu - Infrastructure, Planning algorithm implementation
• Kazu Otani - Planning algorithm implementation, multi-robot communication
• Max Hu - Localization and environment design, multi-robot communication

Acknowledgments

We would like to express our gratitude to our project sponsor, Dr. Oren Salz-
man, (osalzman@andrew.cmu.edu) for his technical guidance, and Vinitha Ranganeni
(vrangane@andrew.cmu.edu) for the infrastructural support she has provided for this project.

References

[1] Solovey, K., Salzman, O., & Halperin, D. (2015). Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. In Algorithmic
Foundations of Robotics XI (pp. 591-607). Springer International Publishing.

[2] van Den Berg, J., Snoeyink, J., Lin, M. C., & Manocha, D. (2009, June). Centralized path
planning for multiple robots: Optimal decoupling into sequential plans. In Robotics: Science and
systems (Vol. 2, No. 2.5, pp. 2-3).

[3] Svestka, P., & Overmars, M. H. (1998). Coordinated path planning for multiple robots. Robotics
and autonomous systems, 23(3), 125-152.

[4] Wagner G & Choset H (2015) Subdimensional expansion for multirobot path planning. Artificial
Intelligence 219: 1–24.

[5] Ogura T. & Rudolph P. (2017). Anki Cozmo ROS driver. Github repository.
https://github.com/OTL/cozmo_driver.

[6] Anki, Inc. (2017). Anki Cozmo Python SDK. Github repository. https://github.com/anki/cozmo-
python-sdk.

8

https://github.com/OTL/cozmo_driver
https://github.com/anki/cozmo-python-sdk
https://github.com/anki/cozmo-python-sdk

	Problem definition
	Related works
	System design
	Hardware
	Architecture
	Interface
	Localization
	Environment
	Locomotion
	Planning

	Challenges
	SDK Hacks
	Localization
	Setup

	Results
	Limitations
	Assumptions in environment setup and collision checking
	Localization

	Future work
	Work division

