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Problem Description   
While exploring far-off planets it currently takes a lot of time to send precise waypoints to the rover 
due to inherent communication latencies. As such, current research methods focus on making rover 
exploration smarter. One approach is for the rover to pick waypoints in accordance to some 
optimization parameter.  
 
The task at hand is the geological classification of a given region using noisy spectrometer data. First 
a satellite surveys a region of the planet and returns low resolution and noisy data of that region. 
Low resolution, in terms of spectroscopy, means the light broken down into a limited, often small, 
number of wavelengths. Rock classification based on this noisy data is unreliable. Hence, to 
supplement the satellite data a ground rover is provided with a high-resolution spectrometer which 
confirms or corrects the values of noisy data by physical sampling. However, using this 
spectrometer is resource costly, prohibiting continuous sampling. Consequently, the goal is to 
sample at selected locations so as to provide the cleanest data possible within the constraints of the 
resource budget.  
 
Information gain is of importance in an information theoretic approach to adaptive exploration. The 
basic idea is to choose the key points so as to maximize the information gain from each sample [1]. 
The whole problem is inherently broken into two challenges. First, the rover needs to select key 
points, which is a global planner. Secondly, a local planner needs to plan a path to the key points, 
during which it can take multiple samples within a certain budget. As such, a plan for the rover not 
only contains waypoints but also sample points within the path. 
 
In this project we focus on different ways of coming up with the waypoints and assume rover is 
sampling at each point. The algorithms are implemented on a simulated environment (details given 
in Appendix A) and not on the actual Zoe rover. 

Challenge 1: Where to Sample 

Approach 1: Differential Entropy 
To maximize the information we want to sample at points where the entropy is the highest. 
Differential Entropy is the method of determining entropy using the variance in the data values of 
different channels of spectroscopic data. It is given by [2]: 
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Where 𝜎b is the variance in the bth band of S. 
The higher the entropy more is the information gain after sampling that point. 
The following steps outline the goal selection and updates to the path followed by the rover:   

1. In the beginning the rover starts by sampling the starting location and calculates the entropy 
of all the points in the map w.r.t the starting point using the noisy satellite data. Thus the current 
sample set consists of only one point i.e., sample set S={S1} 

2. Based on the entropy calculation, the highest entropy point is determined and the rover goes 
to that point and samples it. Thus the sample set increases, S={S1,S2} Entropy calculation will 
now include entropy between this sample set and all the remaining points on the map. 



3. The rover continues to move towards the next highest entropy point while increasing its 
sample set, resulting in reduction of the maximum and average entropy as shown in figure 1 
and 2 in Appendix B for 10 sets of randomly generated maps.  This process stops once the 
sample budget is exhausted (taken as 50 samples).  

Since this is a greedy approach, the robot follows a straight line path to each point, resulting in long 
and repetitive paths as shown in figure 1 below. 

To reduce this path length we tried to limit the search 
space by forming a window around current point 
thereby ensuring that the next sample point is within a 
certain distance from the rover’s current location. Figure 
3 in Appendix B shows that the paths obtained for a 
window size of +-20, which are much shorter and 
cleaner. However the entropy doesn’t decrease 
uniformly over the entire test data (figures 4&5 of 
Appendix B). This is because the window is not able to 
capture the global information. 
Through experimentation it was determined that a 
window of +- 40 results in reduced entropy with shorter 
paths. The comparisons for reduction in entropy per 
unit path length are shown in figures 7 and 8 of 
Appendix B. It can be concluded that there is no 

optimum solution for increasing information gain with reduced path length using the greedy 
approach. As a result more sophisticated techniques were evaluated as discussed further. 

Approach 2: Shannon’s Entropy via Clustering 
 
The information theoretic approach to choosing a point to sample basically tries to optimize the 
amount of information gained by sampling, which is akin to decreasing “uncertainty” by the largest 
amount. To do this, we sample at the point that has the highest uncertainty. One way to formulate 
uncertainty was mentioned via differential entropy. Another way is using traditional Shannon’s 
entropy, which is the expected information of a probability distribution. We defined the probability 
distribution over a set of discrete classes. Each class was defined by clustering the satellite image in 
feature space. Each wavelength in the satellite spectroscopic map was taken to be a feature. The 
data seems to be pulled from a mixture of Gaussian. Finding the cluster centers then is a Gaussian 
process.  
We applied k-means and meanshift to find cluster centers. Since k-means is a parametric approach, 
we assumed the number of distinct classes of rocks in the map was known. On the other hand, 
meanshift doesn’t assume number of classes but requires a variable called ‘bandwidth’ to be 
defined, which is basically how big the clusters should be in feature space, a variable that can be 
optimized. In a particular region, there exists two types of classes, dominant and rare classes. Since 
there are little points pulled from the rare classes, the classification via clustering will never find 
the rare class’ cluster center.  
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Figure 1 Path obtained through greedy sampling 



Once the cluster centers are found, equation 1 is used to define a probability a point ‘i’ falls within 
cluster ‘j’ using the Euclidean distance, which ought to be modified to mahalnobis distance for 
appropriate use. Using this probability, Shannon’s entropy is calculated using equation 2. Once the 
entropy is defined, the maximum entropy point is sampled. Sampling means pulling the 
spectrometer reading from the rover sample map (info 2 described in the simulation environment 
section). This moves the point in feature space because the true value of the point is now available. 
A Gaussian kernel is defined around the moved point to move nearby points. The standard deviation 
of the Gaussian kernel is proportional to the distance of the moved point to its cluster center. 
Basically, points that are very close to a cluster will create a larger Gaussian kernel. Without re-
clustering, the equations are used to create an updated entropy map, from which a new sampling 
point is selected.  
 
The algorithm was run on a test data of 10 different maps. The number of dominant and rare classes 
was varied, while keeping the total number of classes constant. Additionally, the probability of being 
picked from rare classes is varied as well. The results shown are very unstable. Although the entropy 
decreases by 1.25% for k-means and 2.96% in meanshift, as seen in the figure 2, the drop is very 
erratic.  

 
Figure 2: Average entropy from 10 test maps 

Challenge 2: Planning a Path to sampling point 
We discussed the problem of finding a goal for maximizing information till now. Now, given that 
goal, we want to find a path to the goal that optimizes information gain and path length. 

Traditionally, scientists are assigned a budget of distance 
that can be used for exploration while travelling to the 
current goal. Then, scientists determine which rocks might 
be of enough interest while being inside the path budget. 
We find the best possible path for maximizing information 
given the constrained budget and use that as the gold 
standard to compare our heuristic approach. 

Approach 1: Dynamic Programming 
Dynamic programming is used in a breadth first search to 
find the path with maximum information gain, but for a 
constrained path length within the budget. This is then Figure 3 Path obtained from DP approach 



used as a gold standard for comparing our heuristic approach. An example of a path is shown 
generated using the DP approach is shown in figure 3. 
This path results in an information reduction of 69.75% with a 0.5449% entropy reduction per unit 
distance travelled. It should be noted however, that the runtime for this calculation was 5 hours, 
making it infeasible as a dynamic algorithm. The exact comparison can be seen in the statistical 
comparison section later.   

Approach 2: Multi-Heuristic A*[3] 
The Multi-Heuristic A* search algorithm addresses the issue that a single heuristic that captures all 
the specifics of a problem is hard to formulate. The solution proposed by this algorithm is to take 
into account an admissible heuristic in planning (the anchor heuristic) and multiple, arbitrarily 
admissible, heuristic functions.  
For the purposes of our project, we decided to use the satellite information content as the additional 
inadmissible heuristic. This would allow us to combine the anchor heuristic of ‘distance from goal’ 
with the geological information of the map. This would, therefore, result in the expansion of nodes 
based on not only the anchor heuristic, but would also give priority to traversing through areas with 
high information.   
The measurement units for the two heuristics are fundamentally different - the distance is in meters 
whereas the information of a particular cell is normalized to 0-1. To bring them to comparable 
terms, we used a factor, alpha, which scaled the information appropriately in the units of the anchor 
heuristic. 

 The value of alpha was set using a 
multi-objective Pareto optimization. 
The Objective 1 for the optimization 
was the distance travelled by the robot 
whereas Objective 2 captured the 
information content along the path. 
The values for the alpha parameter 
were noted and different paths were 
generated for each value. A qualitative 
comparison of paths generated based 
on information is described in the 
figures below. As can be seen from the 
results, if the information is given more 

weight, the robot tends to explore adjacent areas before reaching the goal. Conversely, if the robot 
does not take information into account, the path generated is similar to A* search. 

                    
Figure 5 Paths generated based on different weights to information and distance. (left) Information>>Distance (center) 
Information<<Distance (right) Optimal weights 

Figure 4 Pareto front 



Statistical comparison of planning approaches 
 
As is evident from above, the two approaches for planning are inherently better than the greedy 
best-first approach demonstrated in the case of searching in windows. A statistical comparison of 
the dynamic programming approach to the Multi-Heuristic A* approach is depicted in the table 
below. Both of them are also compared with the greedy approach for the full map and the windows. 

S no. Technique % Entropy 
reduction 

Entropy 
reduction per 
unit distance 

% Entropy 
reduction per 
unit distance  

Runtime 

1 DP 69.75 211.66 0.5449 5 hours  

2 MHA* 46.87 142.81 0.3982 0.1 s – 4 s 

3 Greedy – Full map    100 3.5 x 10-4 2.2 x 103 0.8 s -0.9 s 

4 Greedy – Window 

Approach 

    100 5.6 x 10-4 1.4 x 103 0.8 s -0.9 s 

The multi-heuristic A* approach proved to be marginally inferior to the dynamic programming 
approach. The dynamic programming approach, even though statistically superior than the MHA*, 
took approximately 5 hours to find a solution for 100x100 grid as the number of states evaluated 
are exponential. Additionally, in the real world, the search would expand radially outward in the DP 
case which makes exhaustive enumeration over all states almost computationally intractable. The 
MHA* is able to come up with a comparable entropy reduction and takes only seconds to come up 
with a first solution.  

Conclusion 
 
The team was successful in emulating currently-used entropy sampling methods using the 
maximum entropy strategy. A novel approach using clustering based methods was explored and the 
groundwork for future research in this procedure was laid. In terms of planning, the team was 
successful in implementing planning using information with two different approaches. The 
approach which takes geological information content as a heuristic provided good results and this 
research provides a good base for future, possibly limited horizon, strategies in information-based 
planning. 
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