Adaptive Exploration for Geological Classification

Team: Aishanou Osha Rait Shivam Gautam Tushar Agrawal Bishwamoy Sinha Roy

Overview

- Problem Introduction
- Simulation Environment
- Problem 1 Sampling Point Selection

• Approach 1 - Variance Method

Approach 2 - Clustering Method

Problem 2 – Planning Path To Sampling Point

Approach 1 - Dynamic Programming (DP)

Approach 2 - Multi-Heuristic A*

Conclusion

Problem Introduction

- Rover exploration of extraterrestrial bodies is slow
- One of the motives of exploration Rock classification
- Spectrometer readings to classify rocks
- Satellite Spectrometers have low wavelength and spatial resolution and high sensor noise
- Ground based spectrometer sampling is costly
- Optimization Problem
- Where to sample such that the rock classification has lowest uncertainty.

Problem Introduction

Problem Introduction

Simulation Environment

- Provides three pieces of information
- Information 1 Satellite Reading for a region
 - Containing less number of channel
- Information 2 Rover reading at each point in the region
 - Result of sampling a point more number of channels (higher resolution)
- Information 3 True classification of each point
- We control
 - o Noise in sensor
 - Number of classes
 - Number of dominant and rare classes

Simulation Environment

Problem 1: Where to sample

Approach 1: Variance based Entropy

Differential Entropy-Greedy Approach

- Starting sample set: S={S1}
- Calculate Entropy of each point in map with the sample set using

$$H(S) = \frac{1}{2} \sum_{b}^{B} \log(2\pi\sigma_{b})$$

where, $\sigma_{\rm b}$ is the variance in the bth band of S

- Maximum Entropy point is the next sample point
- Travel to point S2, sample, and add it to the sample set: S={S1,S2}
- Repeat entropy calculation
- Stop after 50 samples

Greedy Approach - Full map

Starting point - center of map

Greedy Approach - Full map

No. of Test Data = 10

Greedy Approach - Full map

No. of Test Data = 10

Window size +-20

Window size +-20

No. of Test Data = 10

Window size +-20

No. of Test Data = 10

Window size +-40

Window size +-40

No. of Test Data = 10

Window size +-40

No. of Test Data = 10

Paths lengths - Full vs window

Maximum Entropy reduction/path length - Full vs window

Average Entropy reduction/path length - Full vs window

Problem 1: Where to sample

Approach 2: Feature Space based Entropy

General Flow

Satellite Data in feature space

Cluster

Probabilities and entropy calculation

Maximum entropy point sample

Replace sampled point with data and update

Data in Feature Space

Clustering

- K-means
 - Parametric approach assumes number of classes (not available)
- Mean-shift
 - Non-parametric approach bandwidth keeps changing
 - Optimization parameter people have done this...
 - o might not capture the rare classes as they are sparse

Probability and Entropy

$$P_{ij} = \frac{1/d_{ij}}{\sum_{j=1}^{J} 1/d_{ij}}$$

i = feature pointj = clusterJ = total number of clusters

$$H(i) = \sum_{j=1}^{J} P_{ij} \log_2(\frac{1}{P_{ij}})$$

Shannon's Entropy for each feature point Units – bits (log base 2)

Re-sampling

• Gaussian Kernel to move points around the sampled point

Results

2.96% decrease 1.25% decrease Jum Municipality

Overall average entropy decrease in both methods.. Multiple parameters left to optimize!

Problem 2: Planning Path to Sampling Point

Approach 1: DP path length constraint planning

DP approach

• Currently:

- Budget based planning
- Scientist guided
- o Heuristics to optimize

• Extreme case:

- o DP approach to find path with Maximum information gain, given a budget
- Sets a reference for best solution for the budget
- Cannot be used Dynamically -: Computation cost is very high

Problem 2: Planning Path to Sampling Point

Approach 2: Multi-Heuristic A*

Multi-Heuristic A*

Multiple Heuristics in Planning

- o Given a 'Global' Objective, Maximise Information Collected Along the Way
- o Distance as 'Anchor' heuristic
- o Information as an additional Heuristic

Multi-Objective Optimisation

- o Maximise Information Gain
- o Minimize Path Length

Pareto Optimisation Curve

Weight of Information >> Weight of Distance

Weight of Information << Weight of Distance

Optimal Weights for Distance and Information

Statistical Comparison of Planning

Sno.	Technique	Percent Entropy Reduction	Entropy Reduction Per Unit Distance Travelled	Percent Entropy Reduction per Unit Distance Travelled	Runtime
1	Dynamic Programming	69.75%	211.66	0.5449%	5 hours
2	MHA*	46.875%	142.81	0.3982%	0.1s - 4s

Conclusion

- State of the art entropy calculation methods implemented
- Novel implementation of clustering based entropy done
- Planning in Euclidean space and Information space
- Multi Heuristic A*
- Dynamic Programming

Thank You!